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Abstract

Spawned by recent advances in technology, widespread attention has been focused on the
coordination of multiple autonomous vehicles. In numerous mission scenarios, the concept
of a group of agents cooperating to achieve a determined goal is very attractive when
compared with the solution of one single, heavily equipped vehicle, as it exhibits better
performance in terms of efficiency, flexibility and robustness, and can more effectively react
and adapt itself to the environment in which it operates. Applications of coordinated
control of multiple vehicles include microsatellite clusters, formation flying of unmanned
aerial vehicles and automated highway systems.

In the field of ocean exploration there has been a surge of interest worldwide in the
development of autonomous robots equipped with systems to steer them accurately and
reliably in the harsh marine environment and allow them to collect data at the surface and
underwater. The cooperation of multiple autonomous underwater vehicles (AUVs) yields
several advantages and leads to safer, faster, and far more efficient ways of exploring the
ocean frontier, especially in hazardous conditions.

The dynamics of underwater vehicles however are characterized by hydrodynamic effects
that must necessarily be taken into account during the control design. Moreover, it is
common for underwater vehicles to be underactuated, that is, to have fewer actuators than
degrees-of-freedom. Motion control for this class of vehicles is especially challenging because
most of these systems exhibit nonholonomic constraints.

As there are strong practical limitations to the flow of information among vehicles,
which is severely restricted by the nature of the supporting communications network, one
of the aims of formation control must be to reduce the frequency at which information is
exchanged among the systems involved. This is especially true in the case of AUVs, since
underwater communications and positioning rely heavily on acoustic systems, which are
plagued with intermittent failures, latency, and multipath effects.

It is in this framework that this thesis proposes a decentralized control structure, based
on Lyapunov techniques and graph theory, that explicitly takes into account both the
complex nonlinear dynamics of the cooperating vehicles and the constraints imposed by
the topology of the inter-vehicle communications network. For a single vehicle, the solution
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to the motion control problem is based on an inner loop controller, that regulates the
actuators so that a given speed reference is followed, and an outer loop kinematic controller
that adjusts the speed reference to make the vehicle track a “virtual target” moving along
the desired path. Coordination between multiple vehicles is then achieved by parametrizing
the path of each vehicle and regulating the speed of the virtual target so to synchronize the
parametrization states. The discontinuous nature of inter-vehicle communication is taken
into account by introducing a logic-based communication system that minimizes the need for
data exchange. Stability and convergence of the resulting system, and the conditions under
which they hold, are assessed through a rigorous mathematical approach. The performance
of the devised control strategies is finally evaluated with computer simulations.

Keywords: Autonomous underwater vehicles, Coordinated path-following, Coordination
control, Graph theory, Nonlinear control, Underactuated systems.



Resumo

Devido aos recentes desenvolvimentos tecnológicos, a coordenação de múltiplos véıculos
autónomos tem suscitado um enorme interesse no seio da comunidade cient́ıfica. Em di-
versos cenários de missão, o conceito de um grupo de agentes a cooperarem mutuamente
para atingir um determinado objectivo é muito atractivo quando comparado com a solução
de um único véıculo fortemente equipado, pois exibe melhor desempenho em termos de
eficiência, flexibilidade e robustez, para além de ser capaz de reagir e adaptar-se mais efi-
cazmente ao ambiente onde opera. As aplicações do controlo de múltiplos véıculos incluem
constelações de microsatélites, voo em formação de véıculos aéreos não-tripulados e sistemas
de transporte automatizados (AHS - Automated Highway Systems).

No campo da exploração oceânica, tem havido um interesse crescente no desenvolvi-
mento de robôs autónomos equipados com sistemas de navegação capazes de guiá-los com
precisão e fiabilidade num ambiente inóspite como o oceano, e permitir-lhes recolher in-
formação tanto à superf́ıcie como no meio subaquático. A cooperação de múltiplos véıculos
submarinos autónomos (VSAs) apresenta várias caracteŕısticas vantajosas que conduzem a
métodos mais seguros, mais rápidos e mais eficientes de explorar o oceano, especialmente
em condições adversas.

A dinâmica dos véıculos submarinos é caracterizada por efeitos hidrodinâmicos que
têm necessariamente de ser considerados na concepção do sistema de controlo. Outra
caracteŕıstica comum a estes véıculos é o facto de serem frequentemente sub-actuados, i.e.,
possúırem um menor número de actuadores do que graus de liberdade. O controlo de
movimento para este tipo de véıculos é especialmente dif́ıcil uma vez que geralmente estes
sistemas têm propriedades não-holonómicas.

Devido à existência de fortes limitações práticas na transmissão de informação entre
véıculos, restringida pelas caracteŕısticas da rede de comunicação subjacente, um dos objec-
tivos do controlo de formação é a redução da frequência a que ocorre a troca de informação
entre os sistemas envolvidos. Isso torna-se especialmente crucial no caso dos VSAs, uma
vez que a comunicação e o posicionamento no ambiente subaquático baseiam-se princi-
palmente em sistemas acústicos, que sofrem de falhas intermitentes, latência e efeitos de
multipercurso.
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É neste contexto que a presente tese propõe uma estrutura de controlo descentralizada,
baseada em técnicas de Lyapunov e na teoria dos grafos, que considera explicitamente a
complexa dinâmica não-linear dos véıculos a cooperar e os constrangimentos impostos pela
topologia da rede de comunicação. Para um único véıculo, a solução do problema de controlo
de movimento baseia-se num controlador de malha interna, que regula os actuadores de
forma a que uma dada velocidade de referência seja mantida, e num controlador cinemático
da malha externa que ajusta a velocidade de referência de modo a que o véıculo siga um
alvo virtual que percorre o trajecto desejado.

A coordenação entre múltiplos véıculos é obtida através da parametrização do trajecto
de cada véıculo e da regulação da velocidade do alvo virtual de forma a sincronizar os
estados de parametrização. A natureza descont́ınua da comunicação entre véıculos é tida
em conta introduzindo um sistema de comunicação baseado em lógica que minimiza a
necessidade de troca de informação. A estabilidade e a convergência do sistema resultante, e
as condições em que são válidas, são analisadas através de um estudo matemático rigoroso.
O desempenho das estratégias concebidas é finalmente avaliado por meio de simulações
computacionais.

Palavras Chave: Controlo cooperativo, Controlo não-linear, Seguimento coordenado de
caminhos, Sistemas sub-actuados, Teoria dos grafos, Véıculos submarinos autónomos.



“You like the sea, Captain?”

“Yes; I love it! The sea is everything. It covers seven-tenths of the terrestrial
globe. Its breath is pure and healthy. It is an immense desert, where man is
never lonely, for he feels life stirring on all sides. The sea is only the embodiment
of a supernatural and wonderful existence. It is nothing but love and emotion; it
is the ’Living Infinite’, as one of your poets has said. In fact, Professor, Nature
manifests herself in it by her three kingdoms, mineral, vegetable, and animal.
The sea is the vast reservoir of Nature. The globe began with sea, so to speak;
and who knows if it will not end with it? In it is supreme tranquility. The sea
does not belong to despots. Upon its surface men can still exercise unjust laws,
fight, tear one another to pieces, and be carried away with terrestrial horrors.
But at thirty feet below its level, their reign ceases, their influence is quenched,
and their power disappears. Ah! Sir, live—live in the bosom of the waters!
There only is independence! There I recognize no masters! There I am free!”

Jules Verne, 20,000 Leagues Under The Sea
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Chapter 1

Introduction

1.1 Historical perspective

Recent technological advances have spurred a broad interest in autonomous, adaptable ve-
hicle formations. The development of powerful control techniques for single vehicles, the
explosion in computation and communication capabilities, and the advent of miniaturiza-
tion technologies have raised interest in vehicles which can interact autonomously with the
environment and other vehicles to perform, in the presence of uncertainty and adversity,
tasks beyond the ability of individual vehicles. The concept is based on the idea that a
monolithic structure can be distributed in an inexpensive network of vehicles, resulting in
a significant improvement in efficiency, performance, reconfigurability and robustness, and
in the emergence of new capabilities. The types of applications envisioned are numerous.

Spacecraft formation flying is involved for example in autonomous rendezvous and
docking missions. Recently, considerable interest has been focused on microsatellite clus-
ters that have the advantage, over large and complex single-purpose satellites, to expand
functionality, distribute risk, and reduce cost. An example is the United States Air Force
Research Laboratory (ARFL) TechSat 21 mission (Martin and Kilberg, 2001), which is
investigating the ability of a cluster of microsatellites (Fig. 1.1), orbiting in close forma-
tion and jointly processing the interferometric data, to perform high-resolution imaging.

Figure 1.1: TechSat 21 mission (source:
Martin and Kilberg, 2001)

Figure 1.2: TPF interferometer (source:
NASA)

1
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Through this technique, known as Sparse Aperture Radar (SAR), the cluster forms a large
coherent array that provides a rich set of independently sampled data. To obtain the same
results with a single satellite would require an antenna larger than can be deployed.

The goal of the Terrestrial Planet Finder mission (TPF) is to detect Earth-like planets
that orbit nearby stars and to study the composition of their atmosphere. One of the
TPF architectures that is at the moment under study by NASA is a separated infrared
interferometer (Park, 2001), consisting of four spacecrafts equipped with telescopes that
send their collected light to a fifth combiner spacecraft (Fig. 1.2). The interferometer
would have a virtual baseline of several kilometers, enabling the detection of the very faint
infrared emission from the planets.

Further examples of spacecraft formation flying can be found in (Beard et al., 2001;
Mesbahi and Hadaegh, 2001).

Advances in avionics, GPS-based navigation, and flight control techniques have brought
unmanned aerial vehicle (UAV) technology to a point where it is routinely used in com-
mercial and military applications, leading to renewed interest in UAV formation flight

(Fax, 2002). Applications of this technology include air-to-air refueling, military maneuvers
and drag reduction via close formation flight (see Giuletti et al., 2000, and the references
therein).

Considerable work has been done in the field of coordinated control of land robots

(Desai et al., 1998; Ögren et al., 2002; Ghabcheloo et al., 2007). A broad international
effort is being made for the development of an Automated Highway System (AHS) that
would improve safety by avoiding collisions, and increase vehicle throughput, thus reducing
traffic (McMillin and Sanford, 1998; Horowitz and Varaiya, 2000).

1.1.1 Formation control of marine craft

In a great number of mission scenarios multiple marine vehicles must work in cooperation.
Underway replenishment (UNREP), or replenishment at sea (RAS), is a method of trans-
ferring fuel, munitions, personnel and stores from one ship to another while both vessels
are moving (see Fig. 1.3). This operation involves the coordination in a leader-follower
scheme of the two vessels, that have to move in a alongside kind of formation (Kyrkjebø
and Pettersen, 2003; Kyrkjebø et al., 2004).

Following the recent advances in marine technology there has been a surge of interest
worldwide in the development of autonomous surface crafts (ASCs) and underwater vehicles
(AUVs) capable of exploring the oceans to collect data. In many cases two or more vehicles
are required to maintain a determined spatial formation. Fig. 1.4 illustrates the coordinated
operation of the Infante AUV and Delfim ASC, both designed and built at the Instituto
Superior Técnico of Lisbon in the scope of the ASIMOV project (Pascoal and et al., 2000).
In this scenario the AUV serves as a mobile sensor suite to acquire scientific data while the
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Figure 1.3: Underway replenishment (source: http://www.iwo-jima.navy.mil)

Figure 1.4: The ASIMOV project: coordinated path-following of an AUV and an ASC
(source: Pascoal and et al., 2000)
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ASC plays the role of a fast communication relay between the AUV and a support ship.
High data rate underwater communications can best be achieved if the emitter and the
receiver are aligned along the same vertical line, in order to avoid multipath effects, so the
ASC and the AUV must follow exactly the same horizontal path, shifted in the vertical.

In numerous other scenarios there are several disadvantages in using one single vehi-
cle: among them lack of robustness to single point failure and inefficiency due to the fact
that the vehicle might need to wander significantly to collect rich enough data. A coop-
erative network of vehicles has the potential to overcome these limitations and can adapt
its behaviour/configuration, both i) in response to the measured environment, in order to
improve performance and optimize the detection and measurement of fields and features
of particular interest, or ii) in case of failure of one of the vehicles. Furthermore, in a
cooperative mission scenario, each vehicle may only be required to carry a single sensor
making each of the vehicles in the formation less complex then a single heavily equipped
vehicle, thus increasing the reliability of the ensemble (Aguiar and Pascoal, 2007a). Some
examples of missions that require cooperation between multiple vehicles are (Pascoal et al.,
2005):
Image acquisition. An underwater vehicle carries a strong light source and illuminates
the scenery around a second underwater vehicle that must follow a pre-determined path
and acquire images for scientific purposes.
Fast acoustic coverage of the seabed. Two vehicles are required to maneuver above
the seabed, at identical or different depths, along parallel paths, and map the sea bottom
using two copies of the same suite of acoustic sensors. By requesting the vehicles to traverse
identical paths so as to make the acoustic beam coverage overlap on the seabed, large areas
can be covered in a short time. A similar scenario can be envisioned where the vehicles use
a set of vision sensors to inspect the same scenery from two different viewpoints, to try and
acquire three-dimensional images of the seabed.
Quest for hydrothermal vents. Underwater hydrothermal vents produce methane that
does not dissolve quickly in the water. A fleet of underwater vehicles, each equipped with
a methane sensor, can detect the source of a vent by computing on-line and following the
gradient of methane concentration (see Fig. 1.5).

A more detailed introduction to this subject can be found, along with other examples,
in (Stilwell and Bishop, 2000; Encarnação and Pascoal, 2001; Fossen, 2002; Skjetne et al.,
2002).

1.2 Problem statement

From a theoretical viewpoint, the problems that must be solved to achieve coordination
of multiple vehicles cover a vast number of fields that include navigation, guidance, and
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Figure 1.5: AUV formation searching for thermal vents (source: http://www.grex-
project.eu)

control. This thesis focuses on coordinated path-following, where multiple vehicles are re-
quired to follow pre-specified spatial paths while keeping a desired inter-vehicle formation
pattern. This subject poses different and unique challenges in each of the areas of applica-
tion reviewed in the previous section. However, as pointed out in (Fax and Murray, 2004)
several common threads can be found. Two in particular are worth stressing:

i) In most cases (the main exceptions being in the area of aircraft control) the vehicles are
coupled through the task they are required to accomplish together, but are otherwise
dynamically decoupled, that is, the motion of one vehicle does not directly affect the
others.

ii) Decisions must be made by each vehicle using only limited information about the other
vehicles, as communications are restricted by the nature of the supporting network
and may be subject to uncertainty and transmission delay.

The highly distributed nature of the vehicles’ sensing and actuation modules one one side,
and the strong practical limitations to the flow of information among vehicles on the other,
require the adoption of a new control paradigm that departs considerably from classical cen-
tralized control strategies, in which a single controller possesses all the information needed
to achieve the desired control objectives (Ghabcheloo et al., 2006a). For these reasons, there
has been over the past few years a flurry of activity in the area of multi-agent networks with
application to engineering and science problems. Namely, in such topics as parallel com-
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puting (Tsitsiklis and Athans, 1984), synchronization of oscillators (Sepulchre et al., 2003;
Papachristodoulou and Jadbabaie, 2005), collective behavior and flocking (Jadbabaie et
al., 2003), consensus (Lin et al., 2007), multi-vehicle formation control (Egerstedt and Hu,
2001), asynchronous protocols (Fang et al., 2005), and graph theory and graph connectivity
(Kim and Mesbahi, 2006).

In spite of significant progress in all these areas, much work remains to be done to
develop strategies capable of yielding robust performance of a fleet of vehicles in the presence
of complex vehicle dynamics, severe communication constraints, and partial vehicle failures.
These difficulties are specially challenging in the field of marine robotics for two main
reasons:

i) The dynamics of marine vehicles are often complex and cannot be simply ignored or
drastically simplified for control design purposes.

ii) Underwater communications and positioning rely heavily on acoustic systems, which
are plagued with intermittent failures, latency, and multipath effects. These effects
set tight limits on the effective communication bandwidths that can be achieved and
introduce latency in the measurements that are exchanged among the vehicles.

It is in this framework that this thesis proposes a decentralized control structure where the
dynamics of the cooperating vehicles and the constraints imposed by the topology and the
nature of the inter-vehicle communications network are explicitly taken into account.

1.3 Previous work and contributions

1.3.1 Motion control of underactuated vehicles

For fully actuated systems, the problems of trajectory-tracking and path-following are now
reasonably well understood. However, for underactuated autonomous vehicles, i.e., sys-
tems with a smaller number of control inputs than the number of independent generalized
coordinates, they are still active research topics. The study of these systems is motivated
by the fact that it is usually costly and often impractical (due to weight, reliability, com-
plexity, and efficiency considerations) to fully actuate autonomous vehicles (Aguiar and
Hespanha, 2003). Typical examples of underactuated systems include robot manipulators,
wheeled robots, walking robots, spacecraft, aircraft, helicopters, missiles, surface vessels,
and underwater vehicles. The motion control problem for underactuated vehicles is es-
pecially challenging because most of these systems are not fully feedback linearizable and
exhibit nonholonomic constraints. A class of underactuated vehicles that poses considerable
challenging in control system design is the class of marine underactuated vehicles. These
vehicles exhibit complex hydrodynamic effects that must necessarily be taken into account.
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Encarnação et al. (2000) and Encarnação and Pascoal (2000) propose Lyapunov based
control laws to solve the path-following problem for a single autonomous underactuated
vehicle. The advantage of nonlinear control when compared with classical contol strategies
is that it explicitly exploits the physical structure of the vehicles, instead of opposing it.
The path-following problem is divided into a dynamic and a kinematic task, the latter
consisting in making the Serret-Frenet frame {F} associated to the vehicle track a frame
attached to the closest point on the path. This strategy exhibits severe limitations, as the
initial position of the vehicle has to lie inside a tube around the path, the radius of which
has to be smaller than the smallest radius of curvature present in that path.

The solution proposed in (Lapierre et al., 2003b) lifts these restrictions by controlling
explicitly the rate of progression of a “virtual target” to be tracked along the path, that
is, the Serret-Frenet frame is not attached to the point on the path that is closest to the
vehicle. Instead, the origin of {F} is made to evolve according to a conveniently defined
control law, effectively yielding an extra control variable. The same strategy is adopted
and refined in (Aguiar and Hespanha, 2003, 2004, 2007; Aguiar and Pascoal, 2007b), where
parametric modeling uncertainties are considered.

Borrowing from these results, in this thesis we decouple the motion control problem,
designing independently an inner-loop dynamic controller and an outer-loop kinematic con-
troller that produces the speed reference for the inner loop. The reason behind this choice
is that most autonomous underwater vehicles are equipped with an inner-loop controller
that regulates the thrusters so that the surge speed and yaw rate follow a given reference.
Although better results could be achieved, in terms of saturation and smoothness of the
control signal, designing one single controller, decoupling the problem results in greater
portability, as the kinematic control laws obtained can be applied to a wide range of AUVs.
A second contribution is to consider the case in which only some elements of the kine-
matic and dynamic states are available to the controllers. There are two main practical
motivations:

i) The sway velocity sensors are very expensive, and it is therefore interesting to see
how the performance of the control system is limited by their absence.

ii) The approach adopted in deriving the control laws for the inner and outer loop imply
that the inner-loop controller has no access to the time derivative of the reference
speed.

We therefore design the trajectory-tracking and path-following controllers assuming, first,
that there are no restrictions in terms of accessible variables, then introducing the limita-
tions above and proving that the stability and convergence properties still hold under some
reasonable assumptions.
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1.3.2 Coordinated control of multiple AUVs

The results of (Encarnação et al., 2000; Encarnação and Pascoal, 2000) are applied, in
(Encarnação and Pascoal, 2001), to the coordination control of an autonomous surface
craft (ASC) and an autonomous underwater vehicle (AUV). However, the strategy adopted
is not easily generalized to more than two vehicles and requires the exchange of a large
amount of information between them.

A more general approach to coordinated path-following can be found in (Egerstedt and
Hu, 2001), where the formation is defined as the global minimum of a “rigid body constraint
function”, and in (Skjetne et al., 2002, 2003; Lapierre et al., 2003a). The common thread is
to divide the problem in a motion control task, to be solved individually for every vehicle,
each having access to a set of local measurements, and a dynamic assignment task, consisting
in synchronizing the parametrization states that capture the along path distances between
the vehicles. This strategy, that is also the one adopted in this thesis, results in decoupling
path-following (in space) and inter-vehicle coordination (in time). Notice however that
the aforementioned works do not consider the communication constraints imposed by the
topology of the inter-vehicle communications network.

The topics of information flow and cooperation control of vehicle formations are ad-
dressed in (Fax and Murray, 2002a,b), that propose a methodology based on a framework
that involves the concept of Graph Laplacian, a matrix representation of the graph associ-
ated with a given communication network. In particular, the results in (Fax and Murray,
2002a) show clearly how the Laplacian plays a key role in assessing stability of the behavior
of the vehicles in a formation.

In (Ghabcheloo et al., 2006a; Ghabcheloo, 2007) this methodology is used to obtain
coordination laws that hold in case of communication losses and time-delays. Is it assumed,
however, that the flow of information is continuous, even though it may exhibit intermittent
interruptions. Borrowing from (Yook et al., 2002; Xu and Hespanha, 2006), the work in
(Aguiar and Pascoal, 2007a) addresses explicitly the fact that inter-vehicle communications
do not occur in a continuous manner, but take place at discrete instants of time.

The third contribution of this thesis is then to propose an approach that aims at reducing
the frequency at which information is exchanged among the systems involved, extending the
results of (Aguiar and Pascoal, 2007a) and focusing on the simulation of formations with a
higher number of vehicles. A subset of the results reported here were presented in (Vanni
et al., 2007a,b; Aguiar et al., 2007c).

1.4 Thesis outline

The following is a brief description of the structure of this thesis.
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Chapter 2 contains the theoretical preliminaries of nonlinear control and of graph theory
that will be recalled along the thesis.

Chapter 3 describes the dynamics of the general model of AUV and of the Sirene. The
dynamic and kinematic equations are given, first for six degrees of freedom and then
for motion on the horizontal plane.

Chapter 4 derives dynamic and kinematic control laws for the motion control of the AUV
and analyses the properties of the closed-loop system.

Chapter 5 addresses the problem of coordination between multiple vehicles, both with
continuous and discrete communication, and proposes a logic based strategy to tackle
the problem of time-delays.

Chapter 6 illustrates the simulations that were run to test the control strategies devised
in the previous chapters.

Chapter 7 summarizes the results obtained and suggests the directions of further inves-
tigation.



Chapter 2

Mathematical Preliminaries

This chapter introduces the most important concepts and terminology used throughout the
thesis. After defining the notation in Section 2.1, we give a brief overview of the theory of
Lyapunov stability (Section 2.2) and of graph theory (Section 2.3).

2.1 Notation

The following notation will be used in the thesis. All mathematical variables are represented
in italics. Lower case refers to scalars or elements of sets. When x is a scalar, |x| denotes its
absolute value. Vectors are represented in lower case bold. 1 is the vector with all elements
equal to one. xi refers to the ith element of vector x, ‖x‖ to its norm. The norms used in
this thesis are the class of p-norms defined by

‖x‖p = (|x1|p + . . .+ |xn|p)1/p

and
‖x‖∞ = max

i
|xi|,

the (essential) supremum norm

‖x[t0,∞)‖ = sup
t≥t0

‖x(t)‖

and the asymptotic norm
‖x‖a = lim

t→∞
‖x(t)‖.

For simplicity of notation, except when explicitly stated, ‖·‖ denotes the euclidean 2-norm.
However, due to equivalence of norms, and since the choice of a norm on Rn does not
affect the properties of a function, many of the results in this thesis are independent of the
particular norm that is used.

Matrices are represented in upper case, with Aij referring to the element occupying the
ith row and j th column of A. I denotes the identity matrix, the dimension of which will
be clear from the context. Given vector norms on Km and Kn, the corresponding induced

10
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norm on the space of m-by-n matrices is defined as

‖A‖ = max{‖Ax‖ : x ∈ Kn ∧ ‖x‖ = 1}

In the special case of euclidean 2-norm and square matrices, the induced matrix norm is
the spectral norm, or the largest singular value of A:

‖A‖2 =
√
λmax(A∗A)

where A∗ denotes the conjugate transpose of A.
Calligraphed letters refer to sets or graphs, and |G| denotes the cardinality of the set G.

2.2 Nonlinear systems theory

2.2.1 Introduction

In this section we recall some necessary ideas about stability of the equilibrium points of
autonomous and nonautonomous nonlinear systems. The theorems and definitions reported
are borrowed, with the exception of Definition 2.9, from (Khalil, 2002). The proofs are not
reported.

2.2.2 Lipschitz functions

To ensure some properties of the initial-value problem

ẋ = f(t,x), x(t0) = x0

a key constraint that is imposed on the function f(t,x) is the Lipschitz condition

‖f(t,x)− f(t,y)‖ ≤ L‖x− y‖ (2.1)

A function satisfying inequality (2.1) for all (t,x) and (t,y) in some neighborhood of (t0,x0)
is said to be Lipschitz in x, and the positive constant L is called a Lipschitz constant.

Definition 2.1. A function f(t,x) is

• locally Lipschitz in x on [a, b]×D ⊂ R× Rn if each point x ∈ D has a neighborhood
D0 such that f satisfies (2.1) on [a, b]×D0 with some Lipschitz constant L0.

• Lipschitz in x on [a, b]×D ⊂ R×Rn if each point x ∈ D has a neighborhood D0 such
that f satisfies (2.1) on [a, b]×D0 with the same Lipschitz constant L.

• globally Lipschitz in x if it is Lipschitz in x on [a, b]× Rn ⊂ R× Rn.
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The Lipschitz property of a function is stronger than continuity and, as stated in the
following lemmas, weaker than continuous differentiability.

Lemma 2.1. If f(t,x) and [∂f/∂x](t,x) are continuous on [a, b] ×D, for some domain
D ⊂ Rn, then f is locally Lipschitz in x on [a, b]×D.

Lemma 2.2. If f(t,x) and [∂f/∂x](t,x) are continuous on [a, b]×Rn, then f is globally
Lipschitz in x on [a, b]× Rn if and only if [∂f/∂x] is uniformly bounded on [a, b]× Rn.

2.2.3 Lyapunov stability

Suppose the autonomous1 system
ẋ = f(x) (2.2)

has an equilibrium point, which is assumed to be at the origin of Rn, that is, f(0) = 0.
There is no loss of generality in doing so because any equilibrium point can be shifted to
the origin via a change of variables.

Definition 2.2. The equilibrium point x = 0 of (2.2) is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0

• unstable if it is not stable,

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

In order to demonstrate that the origin is a stable equilibrium point, for each selected
value of ε one must produce a value of δ, possibly dependent on ε, such that a trajectory
starting in a δ neighborhood of the origin will never leave the ε neighborhood. It is possible
to determine stability by examining the derivatives of some particular functions, without
having to know explicitly the solution of (2.2).

Theorem 2.3 (Lyapunov’s stability theorem). Let x = 0 be an equilibrium point for (2.2)
and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a continuously differentiable
function such that

V (0) = 0 and V (x) > 0 in D − {0} (2.3)

V̇ (x) ≤ 0 in D (2.4)

1A system in which function f does not depend explicitly on time.
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Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0}

then x = 0 is asymptotically stable.

A function V (x) satisfying condition (2.3) is said to be positive definite. If it satisfies
the weaker condition V (x) ≥ 0 for x 6= 0 it is said to be positive semidefinite. A function
V (x) is said to be negative definite or negative semidefinite if −V (x) is positive definite or
positive semidefinite, respectively. A continuously differentiable function V (x) satisfying
(2.3) and (2.4) is called a Lyapunov function, after the russian mathematician who laid the
bases of this theory.

Theorem 2.4. Let x = 0 be an equilibrium point for (2.2). Let V : Rn → R be a
continuously differentiable function such that

V (0) = 0 and V (x) > 0, ∀ x 6= 0 (2.5)

‖x‖ → ∞⇒ V (x) →∞ (2.6)

V̇ (x) < 0, ∀ x 6= 0 (2.7)

then x = 0 is globally asymptotically stable.

A function satisfying condition (2.6) is said to be radially unbounded.

2.2.4 The invariance principle

The stability theorems of Section 2.2.3 require to find a Lyapunov function whose time
derivative is negative definite. If in a domain about the origin, however, a Lyapunov
function can be found whose derivative along the trajectories of the system is only negative
semidefinite, asymptotic stability of the origin might still be proved, provided that no
trajectory can stay identically at the points where V̇ (x) = 0, except at the origin. This
idea follows from LaSalle’s invariance principle, which is not enunciated here, since a few
definitions would require to be introduced to state the theorem. Instead, we report two
corollaries which had been proved before the introduction of the invariance principle and
whose results are more relevant in the scope of this thesis.

Theorem 2.5 (Barbashin’s theorem). Let x = 0 be an equilibrium point for (2.2). Let
V : D → R be a continuously differentiable positive definite function on a domain D ⊂ Rn

containing the origin x = 0, such that V̇ (x) ≤ 0 in D. Let S = {x ∈ D|V̇ (x) = 0} and
suppose that no solution can stay identically in S, other than the trivial solution x(t) ≡ 0.
Then, the origin is asymptotically stable.
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Theorem 2.6 (Krasovskii’s theorem). Let x = 0 be an equilibrium point for (2.2). Let
V : Rn → R be a continuously differentiable, radially unbounded, positive definite function
such that V̇ (x) ≤ 0 for all x ∈ Rn. Let S = {x ∈ Rn|V̇ (x) = 0} and suppose that no
solution can stay identically in S, other than the trivial solution x(t) ≡ 0. Then, the origin
is globally asymptotically stable.

2.2.5 Nonautonomous systems

The notions of stability and asymptotic stability of equilibrium points of nonautonomous
systems are very similar to those introduced in Definition (2.2) for autonomous systems.
The difference is that while the solution of an autonomous system depends only on (t− t0),
the solution of the nonautonomous system

ẋ = f(t,x), x(t0) = x0 (2.8)

depends on both t and t0, so stability and asymptotic stability need to be redefined as
uniform properties with respect to the initial time. The origin is an equilibrium point of
(2.8) at t = 0 if

f(t,0) = 0, ∀ t ≥ 0

Again, there is no loss of generality since an equilibrium point at the origin could be a
translation of a nonzero equilibrium point.

Definition 2.3. The equilibrium point x = 0 of (2.8) is

• stable if, for each ε > 0, there is δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ t0 ≥ 0 (2.9)

• uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0, independent of t0, such that
(2.9) is satisfied.

• unstable if it is not stable.

• asymptotically stable if it is stable and there is a positive constant c = c(t0) such that
x(t) → 0 as t→∞, ∀ ‖x(t0)‖ < c.

• uniformly asymptotically stable if it is uniformly stable and there is a positive constant
c, independent of t0, such that for all ‖x(t0)‖ < c, x(t) → 0 as t → ∞ uniformly in
t0; that is, for each η > 0, there is T = T (η) > 0 such that

‖x(t)‖ < η, ∀ t ≥ t0 + T (η), ∀ ‖x(t0)‖ < c
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• globally uniformly asymptotically stable if it is uniformly stable, δ(ε) can be chosen
to satisfy limε→∞ δ(ε) = ∞, and, for each pair of positive numbers η and c, there is
T = T (η, c) > 0 such that

‖x(t)‖ < η, ∀ t ≥ t0 + T (η, c), ∀ ‖x(t0)‖ < c

Equivalent definitions, more convenient to the approach followed in this thesis to deal
with the different control problems, can be given using two comparison functions, known
as class K and KL functions.

Definition 2.4. A continuous function α : [0, a) → [0,∞) is said to belong to class K if it
is strictly increasing and α(0) = 0. It is said to belong to class K∞ if a = ∞ and α(r) →∞
as r →∞.

Definition 2.5. A continuous function β : [0, a)× [0,∞) → [0,∞) is said to belong to class
KL if, for each fixed s, the mapping β(r, s) belongs to class K with respect to r and, for
each fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s) → 0 as s→∞.

The next lemma redefines uniform stability and uniform asymptotic stability using class
K and class KL functions.

Lemma 2.7. The equilibrium point x = 0 of (2.8) is

• uniformly stable if and only if there exist a class K function α and a positive constant
c, independent of t0, such that

‖x(t)‖ < α(‖x(t0)‖), ∀ t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c

• uniformly asymptotically stable if and only if there exist a class KL function β and a
positive constant c, independent of t0, such that

‖x(t)‖ < β(‖x(t0)‖, t− t0), ∀ t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c (2.10)

• globally uniformly asymptotically stable if and only if inequality (2.10) is satisfied for
any initial state x(t0).

A special case of uniform asymptotic stability arises when the class KL function β in
(2.10) takes the form β(r, s) = kre−λs.

Definition 2.6. The equilibrium point x = 0 of (2.8) is exponentially stable if there exist
positive constants c, k and λ such that

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀ ‖x(t0)‖ < c (2.11)
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and globally exponentially stable if (2.11) is satisfied for any initial state x(t0).

Lyapunov theory for autonomous systems can be extended to nonautonomous systems.
The following theorems concentrate on uniform stability, uniform asymptotic stability and
exponential stability.

Theorem 2.8. Let x = 0 be an equilibrium point for (2.8) and D ⊂ Rn be a domain
containing x = 0. Let V : [0,∞) × D → R be a continuously differentiable function such
that

W1(x) ≤ V (t,x) ≤W2(x) (2.12)
∂V

∂t
+
∂V

∂x
f(t,x) ≤ 0 (2.13)

∀ t ≥ 0 and ∀ x ∈ D, where W1(x) and W2(x) are continuous positive definite functions
on D. Then, x = 0 is uniformly stable.

Theorem 2.9. Suppose the assumptions of Theorem (2.8) are satisfied with inequality
(2.13) strengthened to

∂V

∂t
+
∂V

∂x
f(t,x) ≤ −W3(x)

∀ t ≥ 0 and ∀ x ∈ D, where W3(x) is a continuous positive definite function on D. Then,
x = 0 is uniformly asymptotically stable. Moreover, if positive constants r and c are chosen
such that Br = {‖x‖ ≤ r} ⊂ D and c < min‖x‖=r W1(x), then every trajectory starting in
{x ∈ Br |W2(x) ≤ c} satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀ t ≥ t0 ≥ 0

for some class KL function β. Finally, if D = Rn and W1(x) is radially unbounded, then
x = 0 is globally uniformly asymptotically stable.

Theorem 2.10. Let x = 0 be an equilibrium point for (2.8) and D ⊂ Rn be a domain
containing x = 0. Let V : [0,∞) × D → R be a continuously differentiable function such
that

k1‖x‖a ≤ V (t,x) ≤ k2‖x‖a

∂V

∂t
+
∂V

∂x
f(t,x) ≤ −k3‖x‖a

∀ t ≥ 0 and ∀ x ∈ D, where k1, k2, k3 and a are positive constants. Then, x = 0 is
exponentially stable. If the assumptions hold globally, then x = 0 is globally exponentially
stable.
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2.2.6 Boundedness

Even when there is no equilibrium point at the origin, Lyapunov analysis can be used to
show boundedness of the solution of the nonlinear system

ẋ = f(t,x) (2.14)

Definition 2.7. The solutions of (2.14) are

• uniformly bounded if there exists a positive constant c, independent of t0 ≥ 0, and for
every a ∈ (0, c), there is β = β(a) > 0, independent of t0, such that

‖x(t0)‖ ≤ a⇒ ‖x(t)‖ ≤ β, ∀ t ≥ t0 (2.15)

• globally uniformly bounded if (2.15) holds for arbitrarily large a.

• uniformly ultimately bounded with ultimate bound b if there exist positive constants
b and c, independent of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) ≥ 0,
independent of t0, such that

‖x(t0)‖ ≤ a⇒ ‖x(t)‖ ≤ b, ∀ t ≥ t0 + T (2.16)

• globally uniformly ultimately bounded if (2.16) holds for arbitrarily large a.

The word ”uniform” is omitted for autonomous systems since the solution depends only
on t− t0.

2.2.7 Input-to-state stability

Consider the system
ẋ = f(t,x,u) (2.17)

where f : [0,∞) × Rn × Rm → Rn is piecewise continuous in t and locally Lipschitz in x

and u and the input u(t) is piecewise continuous. Suppose the unforced system

ẋ = f(t,x,0) (2.18)

has a globally uniformly asymptotically stable equilibrium point at the origin x = 0. It
is possible to view system (2.17) as a perturbation of the unforced system (2.18). Under
certain conditions if the input u(t) is bounded, that is, its supremum norm ‖u[t0,∞)‖ is
finite, the state x(t) is also bounded.
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Figure 2.1: A graphical representation of the asymptotic gain property

Definition 2.8. The system (2.17) is said to be input-to-state stable if there exist a class
KL function β and a class K function γ such that for any initial state x(t0) and any bounded
input u(t), the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ
(
‖u[t0,t]‖

)
(2.19)

The notion of input-to-state stability was first introduced in (Sontag, 1989). Inequality
(2.19) guarantees that for any bounded input u(t) the state x(t) will be bounded. Fur-
thermore, as t increases, the state x(t) will be ultimately bounded by a class K function
of ‖u[t0,∞)‖, that is, an input-to-state stable system satisfies the asymptotic gain property :
there is some class K∞ function γ such that

‖x(t)‖a ≤ γ
(
‖u[t0,∞)‖

)
In other words (see Fig. 2.1) for all large enough t, the trajectory exists, and it gets

arbitrarily close to a sphere whose radius is proportional, in a possibly nonlinear way
quantified by the function γ, to the amplitude of the input (Sontag, 2006). Observe that,
since only large values of t matter in the limit, one can equally well consider merely tails
of the input u when computing its supremum norm:

‖x(t)‖a ≤ γ (‖u(t)‖a)

The imediate consequence is that if u(t) converges to zero as t → ∞, so does x(t). The
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following theorems give sufficient conditions for input-to-state stability.

Theorem 2.11. Let V : [0,∞) × Rn → R be a continuously differentiable function such
that

α1(‖x‖) ≤ V (t,x) ≤ α2(‖x‖) (2.20)
∂V

∂t
+
∂V

∂x
f(t,x,u) ≤ −W3(x), ∀ ‖x‖ ≥ ρ(‖u‖) > 0 (2.21)

∀ (t,x,u) ∈ [0,∞) × Rn × Rm, where α1 and α2 are class K∞ functions, ρ is a class K
function, and W3(x) is a continuous positive definite function on Rn. Then, the system
(2.17) is input-to-state stable with γ = α1

−1 ◦ α2 ◦ ρ.

For autonomous systems conditions (2.20) and (2.21) are also necessary. It is common
in literature to abbreviate input-to-state stability as ISS and to call function V of Theorem
(2.11) an ISS-Lyapunov function.

Theorem 2.12. Suppose f(t,x,u) is continuously differentiable and globally Lipschitz in
(x,u), uniformly in t. If the unforced system (2.18) has a globally exponentially stable
equilibrium point in x = 0, then the system (2.17) is input-to-state stable.

An alternative definition of ISS was suggested in (Sontag and Wang, 1995), substituting
inequality (2.19) with

‖x(t)‖ ≤ max{β(‖x(t0)‖, t− t0), γ
(
‖u[t0,t]‖

)
} (2.22)

Definition 2.22 and Definition 2.8 are equivalent, with the expressions of β and γ being,
in general, different. In some cases inequality (2.22) cannot be satisfied for any x(t0) and
u(t). To address these class of problems, in (Teel, 1996) the concept of ISS with restrictions
on the initial states and inputs was introduced.

Definition 2.9. The system (2.17) is said to be input-to-state stable with restrictions X ⊂
Rn and ∆ > 0 on the initial state x(t0) and the input u respectively if there exist a class
KL function β and a class K function γ such that for any initial state x(t0) ∈ X and any
bounded input function u(t) satisfying ‖u[t0,∞)‖ < ∆ the solution x(t) exists for all t ≥ t0

and satisfies
‖x(t)‖ ≤ max{β(‖x(t0)‖, t− t0), γ

(
‖u[t0,∞)‖

)
}

To distinguish between this last definition and Definition 2.8 some authors refer to the
latter as to global ISS. In the remainder of this thesis however, and with no ambiguity, the
two definitions will be referred to as ISS stability and ISS stability with restrictions.
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Figure 2.2: An undirected graph G and a directed graph G′

2.3 Graph theory

2.3.1 Introduction

Coordinated motion control requires the vehicles to exchange information about their states
over a communications network. In general no vehicle can communicate directly with every
other vehicle in the formation. The topology of the communications network must therefore
be addressed explicitly. Graph theory is a useful tool to model and study the impact of
communication topologies on the performance of the coordinated system. This section
contains a review of the basic concepts that will be used in the thesis. The definitions and
theorems reported borrow from (Diestel, 2005) for undirected graphs, which are suited to
model bi-directional communication networks, and from (Fax, 2002; Lin et al., 2005) for
directed graphs, used to model uni-directional communication networks.

2.3.2 Basic definitions

An undirected graph (or simply graph) is a pair G = (V, E) of sets that satisfy E ⊂ V2, that
is, the elements of E(G) are 2-element subsets of V(G). The elements of V are the vertices
(or nodes, or points) of the graph G; the elements of E are its edges (or lines). The number
of vertices of a graph G is its order, written as |G|; its number of edges is denoted by ‖G‖.
A vertex v ∈ V is incident with an edge e ∈ E if v ∈ e; then e is an edge at v. The set of
all the edges in E at a vertex v is denoted E(v). The degree of a vertex v is the number
|E(v)| of edges at v. A vertex of degree 0 is isolated. An edge {x, y} is denoted by xy or
yx; x and y are its ends. In a graph, the ends of an edge are always different, and no two
edges have the same ends, that is, there are no loops or multiple edges. For this reason
sometimes graphs are referred to as simple graphs to distinguish them from multigraphs,
that can have loops and multiple edges. Two edges x, y ∈ V(G) are adjacent, or neighbors,
if xy ∈ E(G). Two edges e 6= f are adjacent if they have an end in common. If all the
vertices of G are pairwise adjacent, then G is complete. A complete graph on n vertices is
a Kn. Pairwise non adjacent vertices or edges are called independent.
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Figure 2.3: G′ is an induced subgraph of G, G′′ is a spanning subgraph, but not an induced
one, of G

Figure 2.4: A path P = P3 and a cycle C = C4

If the graph is directed (or a digraph) (see Fig. 2.2) the elements of E are called arcs, or
directed edges. The first element of the arc a = xy is denoted tail(a), the second is denoted
head(a). It is said that a points from x to y. If tail(a) 6= head(a) and each element of E is
unique, the graph is called oriented. The in(out)-degree of a vertex v is the number of arcs
with v as its head (tail). A directed graph is complete if every possible arc exists.

Define G ∪ G′ = (V ∪ V ′, E ∪ E ′) and G ∩ G′ = (V ∩ V ′, E ∩ E ′). If G ∩ G′ = ∅, G and G′

are disjoint. If V ′ ⊆ V and E ′ ⊆ E , then G′ is a subgraph of G (and G is a supergraph of G′),
written G′ ⊆ G. If E ′ contains contains every arc (edge) in E whose head and tail (ends)
are in V ′, then G′ is termed an induced subgraph of G, and V ′ is said to induce or span G′

in G (see Fig. 2.3). If G′ ⊆ G and V ′ = V then G′ is a spanning subgraph of G.

2.3.3 Connectivity

A path from x0 to xn is a non-empty graph P = (V, E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk}.

The node x0 has access to xk, or equivalently xk is said to be reachable from x0. The
vertices x1, . . . , xk−1 are the inner vertices of P. If a node is reachable from any other node
then it is globally reachable. The number of arcs (edges) of a path is its length, the path of
length k being denoted by Pk. Two or more paths are independent if none of them contains
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Figure 2.5: Graph G is strongly connected, G′ is connected and G′′ is disconnected

an inner vertex of another. The distance in G of two vertices x and y is the length of the
shortest path from x to y in G. If no such path exists, the distance is infinite. The greatest
distance between any two vertices of G is the diameter of G. If Pk = (V, E) is a path with
k ≥ 3 from x0 to xk, then the graph C = (V, E ′) with E ′ = E + xkx0 is called a cycle. The
length of a cycle is its number of edges (or vertices); the cycle of length k is called a k-cycle
and denoted by Ck (see Fig. 2.4).

Two vertices which have access to one another are said to communicate. A non-empty
graph G is called strongly connected if all vertices communicate with each other or, equiv-
alently, if every vertex is globally reachable. A graph in which disjoint subsets of vertices
exists whose elements do not have access to one another is termed disconnected (Fig. 2.5).
An undirected graph is either strongly connected or disconnected. Communication is an
equivalence relation, and the equivalence classes of V induced by the communication re-
lation are termed components of G (Fig. 2.6). A component, being connected, is always
non-empty, and the empty graph has no components. An acyclic graph, one not containing
any cycles, is called a forest, a connected forest is called a tree.

Theorem 2.13. A connected graph with n vertices is a tree if and only if it has n−1 edges.

The vertices of degree 1 in a tree are its leaves. Every connected graph contains a spanning
tree (any minimal connected spanning subgraph).

2.3.4 Algebraic graph theory

If an arbitrary enumeration is assigned to its vertices and edges (or arcs), matrices can
be associated to a graph to represent it. Algebraic graph theory studies the relationships
between the structure and the properties of a graph and its matricial representations. The
adjacency matrix A(G) of an undirected graph is the symmetric square matrix of size |G|,
defined by Aij = 1 if vivj ∈ E , and Aij = 0 otherwise. The definition holds for directed
graphs, keeping in mind that vivj 6= vjvi, that is, Aij = 1 if vi is the tail of an arc going
to vj , so in general A is not symmetric. The adjacency matrix uniquely defines a graph,
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Figure 2.6: A graph with four components, and a spanning tree in each component

although for a given graph A is not itself unique, as it depends on the enumeration of the
vertices. The degree matrix of an undirected (directed) graph is the square matrix D(G)
in which the elements of the diagonal are the degrees (out-degrees) of the corresponding
vertices, that is, Dii = |A(vi)|. For an oriented graph the incidence matrix can be defined
as the matrix M(G) with rows and columns indexed by the vertices and arcs of G, with
elements

mij =


+1, if vi is the head of arc aj

−1, if vi is the tail of arc aj

0, otherwise

The Laplacian of a graph is defined2 as

L = (D −A) (2.23)

By construction, L is positive semi-definite. If G is undirected then L is also symmetric, so

Theorem 2.14. If G is undirected, then all eigenvalues of L are real.

Observe that the rows of L sum to zero by definition. Then

Theorem 2.15. Zero is an eigenvalue of L, and 1 is the corresponding right eigenvector.

A further result is that

Theorem 2.16. If G is strongly connected, the zero eigenvalue of L is simple. If it is not,
the multiplicity m of the zero eigenvalue is equal to the number of final components of G.
The kernel of L has dimension m, and is spanned by a basis of m nonnegative vectors.

Consider now the normalized Laplacian

LD = D−1(D −A) (2.24)

2An equivalent definition valid for oriented graphs is L = MMT .
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with D−1
ii = 0 by definition when Dii = 0, i.e., when a vertex is isolated; a result obtained

applying the Perron-Frobenius theory is (Fax, 2002)

Theorem 2.17. All eigenvalues of LD lie in a disk of radius 1 centered at the point 1 + 0j
in the complex plane, denoted the Perron disk. If G is strongly connected and aperiodic,
all nonzero eigenvalues lie in the interior of the Perron disk. If G is k-periodic, LD has k
evenly spaced eigenvalues on the boundary of the Perron disk.

Example. Consider the undirected graph G and the directed graph G′ in Fig. 2.2. Then

A(G) =


0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
0 0 0 0 0



D(G) =


3 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 0



L(G) =


3 −1 −1 −1 0
−1 1 0 0 0
−1 0 2 −1 0
−1 0 −1 2 0
0 0 0 0 0



LD(G) =


1 −1

3 −1
3 −1

3 0
−1 1 0 0 0
−1

2 0 1 −1
2 0

−1
2 0 −1 −1

2 0
0 0 0 0 0



A(G′) =


0 1 1 1 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0
0 0 0 0 0



D(G′) =


3 0 0 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0



L(G′) =


3 −1 −1 −1 0
0 0 0 0 0
−1 0 2 −1 0
0 0 0 0 0
0 0 0 0 0



LD(G′) =


1 −1

3 −1
3 −1

3 0
0 0 0 0 0
−1

2 0 1 −1
2 0

0 0 0 0 0
0 0 0 0 0


The eigenvalues of L(G) are {0, 0, 1, 3, 4}. Node 5 is isolated, so there are two components
and the null eigenvalue has multiplicity 2. The eigenvalues of L(G′) are {0, 0, 0, 1.382, 3.618}.
One more null eigenvalue appears, since there is no path between node 2 and node 4,and
viceversa. The eigenvalues of LD(G) are {0, 0, 0.77, 1.5, 1.73} and the ones of LD(G′) are
{0, 0, 0, 0.59, 1.41}, all lying in a disk of radius 1 centered at the point 1+0j in the complex
plane.



Chapter 3

AUV Dynamics

In this chapter we derive the equations that rule the dynamics of an underwater vehicle.
The coordinate frames required to describe the vehicle motion are defined in Section 3.1.
The AUV’s six degrees of freedom kinematic and dynamic equations are then analysed
(Section 3.2), to obtain a simplified model for motion on the horizontal plane. A description
of the Sirene AUV (Section 3.3) concludes the chapter. All the images are borrowed from
(Aguiar, 1996).

3.1 Coordinate frames

To derive the equations of motion of an underwater vehicle in six degrees of freedom (DOF)
it is standard practice to define an earth-fixed inertial frame {U}, composed of the or-
thonormal axes {xU ,yU ,zU} and a body-fixed frame {B}, composed of the orthonormal
axes {xB,yB,zB}, as indicated in Fig. 3.1. The body axes, two of which coincide with
principal axes of inertia of the vehicle, are defined as follows (Fossen, 1994a):

• xB is the longitudinal axis (directed from aft to fore),

• yB is the transverse axis (directed from port to starboard),

• zB is the normal axis (directed from top to bottom).

To simplify the model equations the origin O of the body-fixed frame is usually chosen
to coincide with the center of gravity (CG) of the vehicle. The position and orientation
of the vehicle are described with respect to the inertial reference frame {U}. The linear
and angular velocities of the vehicle, although measured with respect to the same inertial
frame, are expressed in the body-fixed coordinate system {B}. The geometry of the motion
is analyzed in terms of Euler angles. With the frame definitions in Fig. 3.1 the following
entities are defined by adopting the SNAME1 notation (Fossen, 1994a):

• η1 = [x, y, z]T - position of the origin of {B} expressed in {U};
1Society of Naval Architectures and Marine Engineers
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Figure 3.1: Body-fixed and Earth-fixed reference frames

• η2 = [φ, θ, ψ]T - angles of roll, pitch and yaw that parametrize locally the orientation
of {B} with respect to {U};

• ν1 = [u, v, w]T - linear velocities (surge, sway and heave) of the origin of {B} relative
to {U}, expressed in {B};

• ν2 = [p, q, r]T - angular velocity of {B} relative to {U} and expressed in {B};

• τ 1 = [X,Y, Z]T - actuating forces expressed in {B};

• τ 2 = [K,M,N ]T - actuating torques expressed in {B}.

These entities can be written in a compact form to obtain the augmented vectors η =
[ηT

1 ,η
T
2 ]T , ν = [νT

1 ,ν
T
2 ]T and τ = [τT

1 , τ
T
2 ]T .

3.2 Equations of motion

This section describes the kinematic and dynamic equations of motion of an autonomous
underwater vehicle. The analysis of the general model of AUV is based mainly on (Fossen,
1994b) and (Balchen and Yin, 1994), while the more specific considerations about the Sirene
vehicle borrow considerably from the work in (Aguiar, 1996; Rodrigues, 1997; Aguiar, 2002).

3.2.1 Kinematic equations

With the notation introduced in Section 3.1 the kinematic equations can be expressed in a
compact form as [

η̇1

η̇2

]
=

[
J1(η2) 0

0 J2(η2)

]
=

[
ν1

ν2

]
⇐⇒ η̇ = J(η)ν
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where

J1(η2) =

cψcθ −sψcθ + cψsθsφ sψsφ+ cψsθcφ

sψcθ cψcθ + sψsθsφ −cψsφ+ sψsθcφ

−sθ cθsφ cθcφ


is the transformation matrix from {B} to {U}, defined by means of three successive rotations
(xyz convention), and

J2(η2) =

1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ


is the matrix that relates body-fixed angular velocity with roll, pitch, and yaw rates. J2(η2)
is undefined for a pitch angle θ = ±π

2 , a consequence of using Euler angles to describe the
vehicle’s motion. This representation however remains adequate, since because of physical
restrictions the AUV will always operate far from the singular point.

3.2.2 Dynamic equations

For underwater vehicles it is convenient to formulate Newton’s laws in a local body-fixed
coordinate system, so that the inertia tensor is constant in time and the hydrodinamic
forces and moments, which are generated by the relative motion between the body and
the fluid, can be expressed is a simple form. The rigid-body equations of motion can be
expressed in compact form as

MRB(ν̇) + CRB(ν)ν = τRB (3.1)

where τRB is a generalized vector of external forces and moments, MRB is the rigid-body
inertia matrix, constant, symmetrical and positive definite, and CRB(ν) is the rigid-body
Coriolis and centripetal matrix, parametrized so to be skew-symmetrical:

ṀRB = 0

MRB = MT
RB > 0

CRB(ν) = −CT
RB(ν), ∀ ν ∈ R

The extended expressions of MRB and CRB(ν) can be found in (Balchen and Yin, 1994;
Aguiar, 1996; Rodrigues, 1997). Assuming that the contribution from sea currents and
waves can be neglected τRB can be decomposed as

τRB = τ − τA −D(ν)ν − g(η) (3.2)

τ is the vector of the thruster forces.
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τA is the hydrodynamic added mass term, a vector of pressure-induced forces and mo-
ments caused by a forced harmonic motion of the body that can be modeled as an increase
of the body’s inertia. Added mass forces and moments can be separated in terms which
belong to an added inertia matrix MA and a hydrodynamic Coriolis and centripetal ma-
trix CA(ν). For a completely submerged vehicle under the assumption of ideal fluid, no
incident waves, no sea currents and frequency independence the added inertia matrix is
positive definite and constant; moreover in many practical operations it can be assumed to
be diagonal. The hydrodynamic Coriolis and centripetal matrix can be parametrized to be
skew-symmetrical:

ṀA = 0

MA = MT
A > 0

CA(ν) = −CT
A(ν), ∀ ν ∈ R

See (Balchen and Yin, 1994; Aguiar, 1996; Rodrigues, 1997) for the extended expressions
of MA and CA(ν).

D(ν), which contains terms related to hydrodynamic damping and lift forces due to
viscous effects, is positive definite.

g(η) are the weight and buoyancy forces and moments due to gravity and fluid density,
transformed to the body-fixed reference frame. They are also known as restoring forces
because when the distance between the center of buoyancy and the center of mass, called
metacentric height, is positive, i.e. the center of buoyancy is above the center of mass, they
generate a stabilizing moment around the pitch axis. Combining (3.1) and (3.2) the 6 DOF
body-fixed dynamic equations can be expressed in compact form as:

M ν̇ + C(ν)ν +D(ν)ν = τ

where

M = MRB +MA

C(ν) = CRB(ν) + CA(ν).

3.2.3 Simplified equations of motion

Assumptions can be made under which the vehicle will maintain its motion in the horizontal
plane (Fossen, 1994a). With these constraints, the kinematic equations of motion take the
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Figure 3.2: Body-fixed frame and inertial frame on the horizontal plane

form (see Fig. 3.2)

ẋ = u cos(ψ)− v sin(ψ) (3.3a)

ẏ = u sin(ψ) + v cos(ψ) (3.3b)

ψ̇ = r (3.3c)

Introducing a position vector p = [x, y]T , a linear velocity vector v = [u, v]T and an
orthonormal transformation matrix R(ψ) from {B} to {U} for the simplified 3 DOF model,
(3.3a) and (3.3b) can be written in compact form as

ṗ = R(ψ)v (3.4)

The starboard and port thruster forces on the horizontal plane are denoted respectively by
Fs and Fp, and l is their moment arm with respect to the center of geometry and mass of
the AUV, which are assumed to coincide. No side thruster is present, since the vehicle is
underactuated. The control inputs are

τu = Fs + Fp

τr = l(Fs − Fp)

respectively the pushing force along the vehicle axis xB and the steering torque about
its vertical axis zB. Assuming that the AUV is neutrally buoyant and that the centre of
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buoyancy coincides with the centre of mass the dynamic equations of motion for surge,
sway and heading yield

muu̇−mvvr + duu = τu (3.5a)

mvv̇ +muur + dvv = 0 (3.5b)

mrṙ −muvuv + drr = τr (3.5c)

where

mu = m−Xu̇, du = −Xu −X|u|u|u|,

mv = m− Yv̇, dv = −Yv − Y|v|v|v|,

mr = Iz −Nṙ, dr = −Nr −N|r|r|r|,

muv = mu −mv,

In presence of a constant irrotational ocean current vc forming an angle φc with respect to
the fixed frame, the kinematic equations (3.3) hold, with u = ur +uc and v = vr +vc, where
ur and vr are the components of the velocity of the vehicle with respect to the current, and
uc and vc are the components of the ocean current velocity in the body-frame reference. In
this case the dynamic equations (3.5) must be modified to

muu̇r −mvvrr + durur = τu (3.6a)

mvv̇r +muurr + dvrvr = 0 (3.6b)

mrṙ −muvurvr + drr = τr (3.6c)

where dur = −Xu − X|u|u|ur| and dvr = −Yv − Y|v|v|vr|. The equations of the actuated
dynamics can be written in a compact form as

M u̇ + C(vr)u +Du = τ (3.7)

where u = [ur, r]T and

M =

[
mu 0
0 mr

]

C =

[
0 −mvvr

−muvvr 0

]

D =

[
dur 0
0 dr

]

Notice that M and D are positive definite.
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Figure 3.3: The Sirene AUV with benthic lab

When a vehicle is underactuated, the unactuated dynamics imply constraints on the
accelerations. It is demonstrated in (Aguiar, 2002) that the constraint represented by
equation (3.6b) is not integrable, meaning that the system is second order nonholonomic.
In contrast to the first order nonholonomic case (Bloch et al., 1992), such a constraint does
not reduce the dimension of the state space, so a set of three independent configuration
variables and three velocity variables is required to completely specify the state of the AUV
in the horizontal plane.

3.3 The Sirene

One of the techniques employed in the exploration of the oceans consists in placing on the
seabed benthic stations, platforms equipped with dedicated instrumentation, especially de-
signed for the purpose of gathering measures and samples. The Sirene (Figures 3.3 and 3.4)
is an underwater shuttle designed in the scope of the MAST-II European project DESIBEL
(New Methods for Deep Sea Intervention on Future Benthic Laboratories), coordinated by
the French agency IFREMER2, to automatically position benthic labs on the seabed down
to depths of 4000 m. A typical mission is illustrated in Fig. 3.5. With no benthic lab the
Sirene is 4.0 meters long, 1.6 meters wide and 1.96 meters high, and it weighs four tons.
It is equipped with two back thrusters (2 kW) which control surge and yaw motion in the
horizontal plane, while a vertical thruster (1.2 kW) regulates depth. Roll and pitch motion
are not controlled since the metacentric height is sufficiently large (36 cm) to ensure static

2French Research Institute for Exploitation of the Sea
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Figure 3.4: Rear view, left side view and top view of the Sirene with benthic lab
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m = 4000 kg Xu̇ = −290 kg Xu = −360 kg/s X|u|u = −805 kg/m

Iz = 2660 kg m2 Yv̇ = −310 kg Yv = −420 kg/s Y|v|v = −1930 kg/m

Nṙ = −95 kg m2Nr = −110 kg m/sN|r|r = −555 kg m

Table 3.1: Parameters of the simplified model of the Sirene AUV

{    }

zU

xU

yU

U

Flight maneuver

Fine positioning maneuver

Free-fall trajectory

Figure 3.5: Mission scenario: installing a benthic lab on the seabed

stability. A detailed description of the model parameters obtained from a series of tests
on a quarter scale model of the Sirene can be found in (Aguiar, 1996; Aguiar and Pascoal,
1997). The parameters of the simplified model are shown in Table 3.1.



Chapter 4

AUV Motion Control

In this chapter the tracking and path-following problems are solved by decoupling them
into a dynamic and a kinematic task. The controllers for the inner and the outer loop are
designed independently in Section 4.2 and Section 4.4. The stability and convergence of
the closed-loop system are then formally proved in Section 4.6.

4.1 Introduction

Trajectory tracking problems are concerned with the design of control laws that force a
vehicle to reach and follow a time parameterized reference i.e., a geometric path with an
associated timing law (Aguiar and Hespanha, 2003). In path-following problems a vehicle is
required to converge to and follow a path that is specified without a temporal law (Aguiar
and Hespanha, 2004). Once in the path, the vehicle should follow it with a desired speed
profile. Typically, smoother convergence to a path is achieved in this case when compared
with the performance obtained with trajectory tracking controllers, and the control signals
are less likely pushed to saturation (Pascoal et al., 2005). Moreover, in (Aguiar et al., 2005,
2007a), it is proved that in path-following, the performance limitations due to unstable zero-
dynamics can be removed. A possible solution to the path-following problem, which was
adopted for the control of wheeled robots in (Micaelli and Samson, 1993) and of underwater
vehicles in (Encarnação and Pascoal, 2000), is to design a controller that computes i) the
distance between the vehicle’s center of mass and the closest point P on the path and
ii) the angle between the vehicle’s total velocity vector v and the tangent to the path at
P , and reduces both to zero. This is usually done by introducing a Serret-Frenet frame
{F} that moves along the path and plays the role of the body axis of a virtual target
vehicle that should be tracked by the real vehicle. This approach however poses stringent
initial condition constraints and introduces some singularities. The solution proposed in
(Aicardi et al., 2001; Soetanto et al., 2003; Lapierre et al., 2003b) to lift these limitations
is to parameterize the geometric path by a variable γ and control explicitly the rate of
progression γ̇ of the virtual target. This design procedure, followed in this thesis, effectively
creates an extra degree of freedom and allows to bypass the problems that arise when the
position of the virtual target is simply defined by the projection of the actual vehicle

34
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Figure 4.1: The motion control problem is divided into a dynamic and a kinematic task

on that path. Both trajectory tracking and path-following problems can be tackled by
decomposing the motion-control problem into an inner-loop dynamic task, which consists
of making the vehicle move at a desired speed, and an outer-loop kinematic task, which
assigns the reference speed so to achieve convergence to the path (see Fig. 4.1), with or
without the constraint of a timing law. While better results could be achieved, in terms of
saturation and smoothness of the control signal, with a single control law for the vehicle
thrusters, based on a full state feedback, dividing the problem results in simpler control laws.
Moreover, it is common for AUVs to be equipped with inner-loop velocity controllers that
regulate the thrust. Therefore, the same kinematic outer-loop controller could be mounted
on a wide range of AUVs, regardless of the parameters that define their dynamics.

4.2 Dynamic controller

Problem 4.1 (Inner loop). Consider the underwater autonomous vehicle with dynamic
equations given by (3.6). Let ud(t) = [ud, rd]T ∈ R2 be a desired speed assignment and
suppose that ud is sufficiently smooth and its time derivative is bounded. Derive a feedback
control law for τ = [τu, τr]T such that u = [ur, r]T converges to ud exponentially fast.

Define the error between the actual and desired velocities

ũ(t) = u(t)− ud(t)

Convergence of u to ud is equivalent to convergence of ũ to the origin. The actuated
dynamics equation (3.7) can be rewritten introducing the error ũ:

M ˙̃u = −C(vr)u−Du−M u̇d + τ

= −C(vr)u−Dũ−Dud −M u̇d + τ (4.1)

Proposition 4.1. Consider the system described by (4.1) in closed-loop with the control
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law
τ = −Kd(u− ud) +M u̇d + C(vr)u +Dud (4.2)

where

Kd =

[
ku 0
0 kr

]
is positive definite. The origin ũ = 0 is a globally exponentially stable equilibrium point for
this system.

Proof. Substituting the control law (4.2) in (4.1) yields

˙̃u = −M−1[Kd +D]ũ (4.3)

This equation describes the dynamics of the error in closed-loop. It is immediate to observe
that ũ = 0 is an equilibrium point. Consider the following candidate Lyapunov function

Vd =
1
2
ũT ũ (4.4)

and define A = M−1[Kd +D], symmetric and positive definite. The derivative of Vd with
respect to time is

V̇d = ũT ˙̃u = −ũTAũ

Then,

1
2
‖ũ‖2 ≤ Vd ≤

1
2
‖ũ‖2

∂Vd

∂t
+
∂Vd

∂ũ
f(t, ũ) ≤ −‖A−1‖−1‖ũ‖2 (4.5)

All the conditions of Theorem 2.10 are satisfied and the origin is a globally exponentially
stable equilibrium point of system (4.3), i.e. the speed error decays to zero exponentially
with time.

4.3 Ocean current observer

In the presence of ocean currents the dynamic control laws derived in Section 4.2 hold,
since the inner control loop regulates the vehicle-current relative velocities. In the design of
the kinematic control however the intensity of water current has to be taken into account,
since it modifies the total velocity at which the vehicle is moving. There is no easy way of
sensing the currents directly. Instead, let vcxy denote the ocean current expressed in the
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Figure 4.2: Ocean current observer

inertial reference frame {U}, so that

vcxy = R(ψ)

[
uc

vc

]

The kinematic equations (3.4) can be rewritten as

ṗ = R(ψ)vr + vcxy

A simple observer for the current vcxy , with the structure shown in Fig. 4.2 is (Aguiar and
Pascoal, 2007b)

˙̂p = R(ψ)vr + v̂cxy +Kpobs
p̃ (4.6a)

˙̂vcxy = Kcobs
p̃ (4.6b)

where Kpobs
and Kcobs

are the observer gain diagonal matrices, and

p̃ = p− p̂

ṽcxy = vcxy − v̂cxy

are the estimation errors. Assuming that v̇cxy = 0, that is, the current is constant, the
error dynamics are described by

˙̃p = −Kpobs
p̃ + ṽcxy

˙̃vcxy = −Kcobs
p̃

If Kpobs
and Kcobs

are chosen so to be stricly positive the estimation errors have a globally
exponentially stable equilibrium point in the origin, i.e., p̃ and ṽcxy converge to zero expo-
nentially fast. The symbol v̂c, with no reference frame index, will be used in the remainder
of this thesis to denote the estimated water current velocity expressed in the body-fixed
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Figure 4.3: Kinematic problem on the horizontal plane

reference frame {B}:
v̂c = RT (ψ)v̂cxy

4.4 Kinematic controller

4.4.1 Trajectory tracking

To solve the problem of driving a vehicle along a time parametrized desired trajectory,
the idea is to make the vehicle approach a virtual target that moves along the path with a
defined timing law. Let pd(t) be the position of the target. The trajectory tracking problem
for the outer loop can then be formulated as follows:

Problem 4.2. Consider the underwater autonomous vehicle with kinematic equations given
by (3.3), and let pd(t) : [0,∞) → R2 be a continuously differentiable bounded time-varying
desired trajectory. Derive a feedback control law for u such that the position of the vehicle
converges to and remains inside a tube, centered around the desired path, that can be made
arbitrarily thin, i.e., ‖p(t)− pd(γ(t))‖ converges to a neighborhood of the origin that can be
made arbitrarily small.

Referring to Fig. 4.3, define the position error expressed in body-frame coordinates

e = RT (ψ)(p(t)− pd(t)) (4.7)

Its dynamics are described by the expression

ė = ṘT (ψ)(p(t)− pd(t)) +RT (ψ)(ṗ(t)− ṗd(t)) (4.8)
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The time derivative of the rotation matrix is

ṘT (ψ) = −S(r)RT (ψ)

where

S =

[
0 −r
r 0

]
Then,

ė(t) = −S(r)RT (ψ)(p(t)− pd(t)) +RT (ψ)(ṗ(t)− ṗd(t))

Substituting (4.7) and (3.4) into the foregoing expression yields

ė = −S(r)e +RT (ψ)(R(ψ)v − ṗd(t))

= −S(r)(e− δ)− S(r)δ + v −RT (ψ)ṗd(t) (4.9)

where the vector δ = [δ, 0]T , with δ being an arbitrarily small negative constant, has been
introduced. As shown in Fig. 4.3, the new error vector (e− δ) is the distance between the
AUV’s position and a neighborhood of the virtual target’s position. The velocity vector
v is the sum of the velocity of the vehicle with respect to the current and of the velocity
of the ocean current in the body-frame reference, i.e., v = vr + vc. In a fully actuated
vehicle it would be possible to control both elements of the velocity vector vr and to choose
expressions of ur and vr that would make the error converge to zero. However, as stated
in Section 4.2, the control variable for the kinematic outer loop is u = [ur, r]T . Equation
(4.9) can be rearranged as

ė = −S(r)(e− δ) +

[
0 r

−r 0

][
δ

0

]
+

[
ur

vr

]
+

[
uc

vc

]
−RT (ψ)ṗd(t)

= −S(r)(e− δ) +

[
ur

−rδ

]
+

[
0
vr

]
+

[
uc

vc

]
−RT (ψ)ṗd(t)

= −S(r)(e− δ) + ∆u +

[
0
vr

]
+ vc −RT (ψ)ṗd(t) (4.10)

where

∆ =

[
1 0
0 −δ

]
It is now evident why the error is made to converge to a neighborhood of the origin, instead
of to the origin itself: had not δ been introduced the control variable r would not appear
in the position error dynamics.

Proposition 4.2. Consider the system described by (3.4) in closed-loop with the control
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law

u = ∆−1

(
−Kk tanh(e− δ)− vc −

[
0
vr

]
+RT (ψ)ṗd(t)

)
(4.11)

where

Kk =

[
kx 0
0 ky

]
is positive definite. Then e = δ is a globally asymptotically stable equilibrium point for this
system.

Proof. Define the candidate Lyapunov function

Vk =
1
2
(e− δ)T (e− δ) (4.12)

whose time derivative is
V̇k = (e− δ)T ė (4.13)

Substituting the control law (4.11) in (4.10) yields

ė = −S(r)(e− δ)−Kk tanh(e− δ) (4.14)

The foregoing expression describes a system for which e = δ is an equilibrium point.
Substituting (4.14) into (4.13), and remembering that S(r) is skew-symmetric

V̇k = −(e− δ)TS(r)(e− δ)− (e− δ)TKk tanh(e− δ)

= −(e− δ)TKk tanh(e− δ)

Since Kk is symmetric and positive definite, we can conclude that

1
2
‖e− δ‖2 ≤ Vk ≤

1
2
‖e− δ‖2 (4.15)

∂Vk

∂t
+
∂Vk

∂e
f(t, e) ≤ − tanh(e− δ)TKk tanh(e− δ) ≤ 0 (4.16)

The function 1
2‖e − δ‖2 is radially unbounded. Hence, all the conditions of Theorem 2.9

are satisfied and e = δ, where δ can be chosen arbitrarily close to the origin, is a globally
asymptotically stable equilibrium point.

Remark. Observe from (4.11) that choosing a smaller value of δ, so that the equilibrium
point is closer to the origin, corresponds to an increase in the intensity of the control input
r. In view of this, a possible alternative control strategy is to view δ as an additional input
signal and shape its behavior accordingly to the value of e and the maximum input r. This
requires further investigation and is not pursued here.



4.4. KINEMATIC CONTROLLER 41

Figure 4.4: Trajectory-tracking controller

In (4.11) it was assumed in the design of the tracking controller (Fig. 4.4) that the term
ṗd(t) is known. This is immediate in applications where the path and the timing law are
determined a priori. When instead only pd(t), and not its time derivative, is accessible,
as in the case of following a target whose position is detected through sensors, ṗd(t) may
be obtained through filtering. See for example (Aguiar et al., 2003) where experimental
results are reported of using nonlinear filtering to make an hovercraft track a target.

4.4.2 Path-following (strategy I)

Lifting the temporal constraint deriving from the timing law, the path-following problem
can be formulated as follows:

Problem 4.3. Consider the underwater autonomous vehicle with kinematic equations given
by (3.3), and let pd(γ) ∈ R2 be a desired path parameterized by a continuous variable
γ(t) ∈ R and vd(γ) ∈ R a desired speed assignment. Suppose also that pd(γ) is sufficiently
smooth and its derivatives with respect to γ are bounded. Design a controller such that the
position of the vehicle i) converges to and remains inside a tube, centered around the desired
path, that can be made arbitrarily thin, i.e., ‖p(t)− pd(γ(t))‖ converges to a neighborhood
of the origin that can be made arbitrarily small, and ii) satisfies a desired speed assignment
vd along the path, i.e., |γ̇(t)− vd(γ(t))| → 0 as t→∞.

The position error (4.7) can be redefined for path-following as

e = RT (ψ)(p(t)− pd(γ(t))) (4.17)
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Then, expression (4.10), describing the error dynamics, becomes

ė = −S(r)(e− δ) + ∆u +

[
0
vr

]
+ vc −RT (ψ)ṗd(γ)

= −S(r)(e− δ) + ∆u +

[
0
vr

]
+ vc −RT (ψ)

∂pd(γ)
∂γ

γ̇ (4.18)

where the dependence of the time derivative of the desired path from the parameter γ has
been made explicit. Define the speed error

z = γ̇(t)− vd(γ(t)) (4.19)

Note that the speed assignment vd is not an actual velocity: it expresses the rate at which
the parameter γ changes. The desired speed of the virtual target is ∂pd(γ)

∂γ vd. Imposing the
equality

γ̇ = vd(γ) (4.20)

satisfies identically the speed assignment1. Then, replacing the term ṗd(t) with ∂pd(γ)
∂γ vd in

the control law (4.11) brings to the same results of Proposition 4.2, that can be restated as
follows.

Proposition 4.3. Consider the system described by (3.4) in closed-loop with the control
law

u = ∆−1

(
−Kk tanh(e− δ)− vc −

[
0
vr

]
+RT (ψ)

∂pd(γ)
∂γ

vd

)
(4.21)

where

Kk =

[
kx 0
0 ky

]
is positive definite. Then e = δ, arbitrarily close to the origin, is a globally asymptotically
stable equilibrium point for this system, and the speed error z is identically null.

The path-following controller designed in this section is very similar to the trajectory-
tracking controller of Section 4.4.1. In fact, as it is shown in Fig. 4.5, the path-following
controller can be seen as the cascade of a path-generator block and the trajectory-tracking
controller (Fig. 4.4). The reason for this is that in both cases the virtual target progresses
along the path with some velocity constraint, depending on time in the case of tracking, and
on the position of the virtual target, i.e., on the value of γ, in the case of path-following.
However, as will be seen in Chapter 5, the introduction of a parameter γ is greatly relevant
for two reasons. First, it is fundamental for the coordination of multiple vehicles. Second,

1In Section 4.5 we show a different strategy to deal with the speed assignment constraint.
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Figure 4.5: Path-following control (strategy I)

as

γ(t) = γ(t0) +
∫ t

t0

γ̇dt

it introduces an additional flexibility to control the vehicle: the initial value γ(t0).

4.5 Path-following (strategy II)

An alternative control strategy can be adopted to solve the path-following problem without
imposing the equality (4.20). Substituting (4.19) into (4.18) yields

ė = −S(r)(e− δ) + ∆u +

[
0
vr

]
+ vc −RT (ψ)

∂pd(γ)
∂γ

(z + vd) (4.22)

An expression for the speed error dynamics can be obtained from the time derivative of
(4.19):

ż = γ̈(t)− v̇d(γ(t)) (4.23)

Define a composite error vector ec = [e− δ, z]T , whose dynamics are described by

ėc =

[
ė

ż

]
(4.24)

The path-following problem can now be viewed as determining a control law for u and γ̈

that drives ec to 0 (see Fig. 4.6). The additional control variable γ̈ was introduced through
the technique known as backstepping (Khalil, 2002).

Proposition 4.4. Consider the system described by (3.4) in closed-loop with the control
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Figure 4.6: Path-following control (strategy II)

laws

u = ∆−1

(
−Kk tanh(e− δ)− vc −

[
0
vr

]
+RT (ψ)

∂pd(γ)
∂γ

vd

)
(4.25a)

γ̈ = −kzz +
∂vd(γ)
∂γ

γ̇ + (e− δ)TRT (ψ)
∂pd(γ)
∂γ

(4.25b)

where kz is a positive constant and

Kk =

[
kx 0
0 ky

]

is positive definite. The origin ec = 0 is a globally asymptotically stable equilibrium point
for this system.

Proof. Define a Lyapunov function for the position error as in (4.12), a second Lyapunov
function for the speed error

Vz =
1
2
z2

and a composite Lyapunov function

Vc =
1
2
eT

c ec = Vk + Vz

The time derivative of Vc is

V̇c = V̇k + V̇z = (e− δ)T ė + zT ż (4.26)
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Substituting (4.22) and (4.23) into the foregoing expression yields

V̇c = (e− δ)T

(
∆u +

[
0
vr

]
+ vc −RT ∂pd

∂γ
(z + vd)

)
+ z(γ̈ − v̇d)

= (e− δ)T

(
∆u +

[
0
vr

]
+ vc −RT ∂pd

∂γ
vd

)

+ z

(
γ̈ − v̇d − (e− δ)TRT ∂pd

∂γ

)
(4.27)

Defining

Kc =

kx 0 0
0 ky 0
0 0 kz


and substituting the control laws (4.25) in (4.27)

V̇c = −(e− δ)TKk tanh(e− δ)− kzz
2

≤ −eT
c Kc tanh ec (4.28)

The following inequalities are verified:

1
2
‖ec‖2 ≤ Vc ≤

1
2
‖ec‖2 (4.29)

∂Vc

∂t
+
∂Vc

∂ec
f(t, ec) ≤ −eT

c Kc tanh ec ≤ 0 (4.30)

The function 1
2‖ec‖2 is radially unbounded. Hence, all the conditions of Theorem 2.9

are satisfied and the origin ec = 0 is a globally asymptotically stable equilibrium point:
e = p− pd and z = γ̇ − vd converge respectively to δ and 0.

The difference with the path-following controller designed in Section 4.4.2 is that now
the evolution of the position of the virtual target pd also depends on the position error
(e − δ). If the error is positive, that is, the AUV is behind the desired position, then the
virtual target moves slower, to allow the vehicle to reach it. Viceversa, if the vehicle is in
front of the virtual target, this moves faster. This is illustrated in Section 6.1.

4.6 Closed-loop controllers

4.6.1 Tracking controller

In the previous sections, control laws for the inner and outer loop have been designed inde-
pendently. This however is not sufficient to guarantee that all closed-loop signals converge,
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Figure 4.7: The dynamic and the kinematic controllers in closed-loop

or are bounded. In particular, the speed requirements produced by the outer-loop control
are not satisfied identically, but are instead assigned to ud = u− ũ, so the dynamics of the
inner loop will affect the outer loop, and expression (4.10), describing the dynamics of the
position error, becomes

ė = −S(r)(e− δ) + ∆(ud + ũ) +

[
0
vr

]
+ vc −RT (ψ)ṗd(t) (4.31)

Furthermore, the control laws for both loops require for the sway velocity vr to be known.
The sensors that measure the sway velocity, however, are very expensive, so it was chosen to
remove the terms containing vr from the control laws, and view them as input perturbations
that limit the performance of the system. The same applies to u̇d, which appears in the
control law (4.2): if the two control loops are to be kept independent this term should not be
available to the inner loop, as it is common for the inner-loop speed controllers mounted on
AUVs to have only the reference velocities, and not their derivatives, as inputs. Therefore
new control laws, not containing vr nor u̇d, are adopted (see Fig. 4.7).

Theorem 4.1. Consider the system described by (3.4) and (3.6) in closed-loop with the
ocean current observer (4.6) and the control laws

τ = −Kd(u− ud) +Dud (4.32a)

ud = ∆−1
(
−Kk tanh(e− δ)− v̂c +RT (ψ)ṗd(t)

)
(4.32b)

where

Kd =

[
ku 0
0 kr

]
, Kk =

[
kx 0
0 ky

]
are positive definite, and let ṗd, p̈d and vc be bounded inputs. If the gains Kd and Kk are
sufficiently large, then the system is ISS with restrictions on the initial states e(0) and
vr(0).
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Proof. The proof is divided in two parts. First it is shown that, under some assumptions,
the system is ISS with restrictions. Then the validity of the assumptions is demonstrated.
At this stage we also assume that in (4.32b) v̂c = vc. We will lift this assumption later.

Input-to-state stability
Define a Lyapunov function

V =
1
2
(ũT ũ + eT e)

Its time derivative is
V̇ = ũT ˙̃u + eT ė

Substituting the control laws (4.32) in (4.1) and (4.31) yields

˙̃u = −M−1 [Kd +D] ũ−M−1C(vr)u− u̇d (4.33a)

ė = −S(r)(e− δ)−Kk tanh(e− δ) + ∆ũ + [0, vr]T (4.33b)

Then,

V̇ = −ũTM−1 [Kd +D + C(vr)] ũ− ũTM−1C(vr)ud − ũT u̇d

− (e− δ)TKk tanh(e− δ) + (e− δ)T ∆ũ + (e− δ)T [0, vr]T (4.34)

Remembering that vc = RT vcxy The time derivative of the reference speed ud is

u̇d = ∆−1
(
−4KkBė + S(r)RT vcxy − S(r)RT ṗd(t) +RT p̈d(t)

)
= −4KkBũ + a (4.35)

where

a = ∆−1
(
4KkB

(
S(r)(e− δ) +Kk tanh(e− δ) + [0, vr]T

)
+S(r)RT vcxy − S(r)RT ṗd(t) +RT (ψ)p̈d(t)

)
(4.36)

and B = cosh−1(e− δ) cosh−1(e− δ)T . Substituting (4.35) in (4.34) yields

V̇ = −ũT
[
M−1 [Kd +D + C(vr)]− 4KkB

]
ũ− ũTM−1C(vr)ud

− ũT a− (e− δ)TKk tanh(e− δ) + (e− δ)T ∆ũ + (e− δ)T [0, vr]T (4.37)

Applying Young’s inequality

uw ≤ 1
µ
up + µ

1
p−1w

p
p−1 , ∀ u ≥ 0, w ≥ 0, µ > 0, p > 1
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with p = 2 to the term (e− δ)T ∆ũ allows to rewrite (4.37) as the inequality

V̇ ≤ −ũT
([
M−1 [Kd +D + C(vr)]− 4KkB − µ∆2

]
ũ−M−1C(vr)ud − a

)
− (e− δ)T

(
Kk tanh(e− δ) +

1
µ

(e− δ) + [0, vr]T
)

(4.38)

Denoting
Ku = M−1 [Kd +D + C(vr)]− 4KkB − µ∆2

we conclude from (4.38) that V̇ ≤ 0 when

(1− θu + θu)ũTKuũ ≥ ũT
[
M−1C(vr)ud + a

]
(4.39)

(1− θe + θe)(e− δ)TKk tanh(e− δ) ≥ (e− δ)T

(
1
µ

(e− δ) +

[
0
vr

])
(4.40)

where 0 < θu, θe < 1. Assume now that vr is small enough for Ku to be positive definite.
Then, when

‖ũ‖ ≥ 1
θu
‖K−1

u ‖‖M−1C(vr)ud + a‖ (4.41)

‖e− δ‖ ≥ arctanh
(

1
θe

(
1
µ
‖K−1

k ‖‖e− δ‖+
1
kr
|vr|
))

(4.42)

it follows from (4.38), (4.39) and (4.40), that

V̇ ≤ −(1− θu)ũTKuũ− (1− θe)(e− δ)TKk tanh(e− δ) ≤ 0

Hence, applying Theorem 2.11 the system is ISS with respect to the inputs ud and a.
However, condition (4.42) can be satisfied only when the argument of the inverse hyperbolic
tangent is less than 1, that is, when (e− δ) and vr are small enough.

Boundedness of vr, ud, and a

Define a Lyapunov function for the sway velocity vr

Vv =
1
2
v2
r

In (3.6b), urr can be viewed as a single, continuous input:

v̇r = f(t, vr, urr) = −dvr

mv
vr −

mu

mv
urr
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The time derivative of the Lyapunov function is

V̇v = vrv̇r = −dvr

mv
v2
r +

mu

mv
vrurr

= −(1− θv)
dvr

mv
v2
r − θ

dvr

mv
v2
r +

mu

mv
vrurr

where 0 < θv < 1. Then,

V̇v ≤ −(1− θ)
dvr

mv
v2
r , ∀ |vr| ≥

mu

dvrθv
|urr|

Hence, the conditions of Theorem 2.11 are satisfied, ‖vr(t)‖a ≤ γ (‖ur(t)r(t)‖a) and in
particular

‖vr(t)‖a ≤
mu

dvrθv
‖urr‖a (4.43)

Consider now the dynamics of u = ud + ũ. From (4.33a)

u̇ = u̇d + ˙̃u = −M−1 [Kd +D] ũ−M−1C(vr)u

= −M−1 [Kd +D − C(vr)]u +M−1 [Kd +D]ud (4.44)

Define a Lyapunov function

Vu =
1
2
uT u

whose time derivative is

V̇u = uT u̇ = −uTM−1 [Kd +D − C(vr)]u + uTM−1 [Kd +D]ud (4.45)

If the matrix Ku in the first part of the proof is positive definite, this will be true also for
the matrix M−1 [Kd +D − C(vr)]. Then, defining 0 < θu < 1, when

‖u‖ ≥ 1
θu
‖ [Kd +D − C(vr)]

−1M‖‖M−1 [Kd +D] ‖‖ud‖

is verified, then
V̇u ≤ −(1− θu)uTM−1 [Kd +D − C(vr)]u ≤ 0

and from Theorem 2.11

‖u(t)‖a ≤
1
θu
‖ [Kd +D − C(vr)]

−1M‖‖M−1 [Kd +D] ‖‖ud‖a (4.46)

If u is asymptotically bounded, the same must be true about its components ur and r.
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Then, it proceeds from (4.43) that

‖vr(t)‖a ≤
mu

dvrθv
‖ur‖a‖r‖a ≤

mu

dvrθuθv
‖u(t)‖2

a

with the bound ‖u(t)‖a depending on ud (see 4.46). From (4.32b),

‖ud‖ ≤ ‖∆−1‖
(
‖Kk‖+ ‖vc [t0,∞)‖+ ‖ṗd [t0,∞)‖

)
As for the vector a, considering that ‖S(r)‖ = |r|, and that there exist finite constants ε1
and ε2 such that

4‖B tanh(e− δ)‖ < ε1

4‖B(e− δ)‖ < ε2,

for any e ∈ R2, from (4.36)

‖a‖ ≤ ‖∆−1‖
[
‖Kk‖ (ε1|r|+ ε2‖Kk‖+ |vr|) + ‖v̇cxy‖+ |r|‖vcxy‖+ |r|‖ṗd(t)‖+ ‖p̈d(t)‖

]
that is, ‖ud‖ and ‖a‖ are bounded by a sum of bounded terms and are therefore bounded.
Then, in accordance with Definition 2.9, the system is ISS with restrictions on the initial
states e(0) and vr(0). To conclude the proof we now have to show that lifting the assumption
that v̂c = vc, that is, considering the dynamics of the observer, the closed-loop system is
still ISS. This follows immediately from the fact that the closed-loop system can be viewed
as the cascade of a globally asymptotically stable system (the observer) with output error
ṽc, and an ISS system with input v̂c = vc + ṽc.

It is reasonable, following considerations of physical nature, to assume that the water
current is bounded, while the bounds on ṗd and p̈d are imposed when a certain mission is
designed for the AUV. If vr(0) is small enough (or Kd is sufficiently large) for the matrix
Ku to be positive definite then, as stated in the second part of the proof, vr(t) converges
to a neighborhood of the origin, the radius of which is proportional to ‖ud‖2. The gain Kd

of the inner-loop controller must then be high enough to relax the restriction on the initial
condition of vr, otherwise vr might be pushed outside the stable zone. Then, given the
bounds on vc and ṗd and the restriction on e, the parameters µ and Kk must be chosen
so to minimize the argument of the hyperbolic tangent in (4.42). This might be done by
adopting a high value for µ, so Kd should be adjusted accordingly. Selecting a high gain
Kk in the outer loop is helpful in rejecting the influence of vc and ṗd, but increases ud, so
a trade-off must be made in selecting its value. Notice that less conservative restrictions
would be obtained analyzing the single scalar equations instead of the vectorial expressions.
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4.6.2 Path-following controllers

The results stated in Theorem 4.1 apply to the control laws derived in Section 4.4.2, since
in this case ṗd = ∂pd(γ)

∂γ vd and it is still reasonable to assume that the term is bounded.
Therefore, Theorem 4.1 can be restated as follows.

Theorem 4.2. Consider the system described by (3.4) and (3.6) in closed-loop with the
ocean current observer (4.6) and the control laws

τ = −Kd(u− ud) +Dud (4.47a)

ud = ∆−1

(
−Kk tanh(e− δ)− v̂c +RT (ψ)

∂pd(γ)
∂γ

vd

)
(4.47b)

where

Kd =

[
ku 0
0 kr

]
, Kk =

[
kx 0
0 ky

]

are positive definite, and let ∂pd(γ)
∂γ vd,

∂2pd(γ)
∂γ2 vd and vc be bounded inputs. If the gains Kd

and Kk are sufficiently large, then the system is ISS with restrictions on the initial states
e(0) and vr(0)

As for the path-following strategy II described in Section 4.5, the dynamics of the error
z have to be taken into account, and a term zż has to be added to the derivative of the
Lyapunov function (4.38). This however results in adding a negative term −z2, so the
properties of convergence of the closed-loop system are not changed. When the restriction
on the initial condition e(0) is satisfied, the control variable γ̈ defined in (4.25b) is bounded,
as it is the sum of bounded terms.

Theorem 4.3. Consider the system described by (3.4) and (3.6) in closed-loop with the
ocean current observer (4.6) and the control laws

τ = −Kd(u− ud) +Dud (4.48a)

ud = ∆−1

(
−Kk tanh(e− δ)− v̂c +RT (ψ)

∂pd(γ)
∂γ

vd

)
(4.48b)

γ̈ = −kzz +
∂vd(γ)
∂γ

γ̇ + (e− δ)TRT (ψ)
∂pd(γ)
∂γ

(4.48c)

where

Kd =

[
ku 0
0 kr

]
, Kk =

[
kx 0
0 ky

]

are positive definite, and let ∂2pd(γ)
∂γ2 vd and vc be bounded inputs. If the gains Kd and Kk

are sufficiently large, then the system is ISS with restrictions on the initial states e(0) and
vr(0).
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4.7 Summary

In this chapter, trajectory-tracking and path-following controllers for an underactuated
AUV were designed. To increase portability the motion control problems were divided into
a dynamic task, assigned to an inner-loop controller, and a kinematic one, assigned to an
outer-loop controller. Stability and convergence have been proven to hold, under some
assumptions, in closed-loop. Notice that the results presented in this chapter are not based
on the particular value of any of the physical parameters of the AUV, but on the structure
of the general model described in Chapter 3. The control laws proposed are thus valid for
a wide class of underwater vehicles.



Chapter 5

Coordination

In this chapter we devise a decentralized control strategy to achieve coordination between
multiple AUVs. After defining a convenient coordination error, based on the Laplacian of
the graph associated to the communications network (Section 5.2), a coordination law is
derived in Section 5.3 assuming that the vehicles communicate continuously. This assump-
tion is lifted in Section 5.4 by introducing a logic based communications system, which in
Section 5.5 is refined to take into account time-delays.

5.1 Introduction

In Chapter 4 control laws were derived to drive a single AUV along a desired path with a
given speed profile. To do this the path was parametrized and a speed profile vd(γ) was
assigned to the parameter’s derivative γ̇. Consider now a group of n AUVs (a flock): to
achieve coordination between the elements of the group, a common speed profile vL has to
be assigned, so that the vehicles move along the given paths while holding a desired inter-
vehicle formation pattern. The parameter γ of each vehicle can be seen as a coordination
state such that coordination exists between two vehicles i and j if γi(t) = γj(t). The
problem is therefore decoupled in the motion control problem solved in Chapter 4, and a
dynamic assignment task, that is the subject of this chapter, whose aim is to drive the
coordination error between any two vehicles to zero.

5.2 Problem statement

Underwater communications and positioning rely heavily on acoustic systems, which are
plagued with intermittent failures, latency, and multipath effects (Ghabcheloo et al., 2006a).
The controller should then be designed so to minimize the information flow. Because of the
very nature of the intervehicle communications network a centralized control law, based on
the knowledge of all the coordination parameters γi of the vehicles in the group, is not a
practical solution to the problem, since every vehicle would have to receive, either directly
or through other vehicles, information about the rest of the flock. The approach pursued
in this thesis is instead a decentralized one, that takes into consideration the existing
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communication constraints: the correction speed ṽdi
is determined only on the base of the

measurements available to vehicle i, that is, the coordination states of the vehicles that
communicate with i. To describe the communication topology it is a natural choice to
resort to the graph theory notions introduced in Chapter 2. The vehicles in a flock are
the vertices of a graph, the existing communication links are the edges, directed if the
communication is unidirectional, undirected if the communication is bidirectional.

Consider a group of vehicles I := {1, . . . , n}. Let γ = [γ1, . . . , γn]T be the vector
containing the coordination states of the n vehicles, and Ni denote the set of vehicles
that vehicle i exchanges information with or, in the case of unidirectional communication,
receives information from. The coordination problem can be formulated as follows (Aguiar
et al., 2007b)

Problem 5.1. For each vehicle i ∈ I derive a control law for the speed command ṽdi
as

a function of γi and γj, with j ∈ Ni, such that for all i, j ∈ I γi − γj approaches zero as
t→∞, and the formation travels at an assigned speed vL, that is, |γ̇ − vL| tends to zero.

Define an error vector
ξ = LDγ (5.1)

where LD is the normalized Laplacian of expression (2.24), obtained associating a commu-
nication graph (Ghabcheloo et al., 2006b) to the AUV formation. The assumption is made
that the communication topology does not change in time, i.e., the Laplacian is constant.
The i-th element of the vector is

ξi = γi −
1
|Ni|

∑
j∈Ni

γj

that is, the sum of the coordination errors between vehicle i and the vehicles that com-
municate with it. The single variable ξi embodies the communication constraints of the
network and can be used for control purposes (Ghabcheloo, 2007). This fact plays a key
role in the computation of a decentralized coordination control law.

Theorem 2.15 states that 1 belongs to the kernel of LD, so when all the vehicles are
in coordination, γ is a multiple of 1 and consequently the error vector ξ is null. If any
vehicle is isolated from the rest of the formation the Laplacian has m null eigenvalues
(Theorem 2.16), corresponding to the rigid motions of the m isolated elements of the flock.
In the following, only strongly connected formations will be considered. The kernel has
therefore dimension 1 and is spanned by the unit vector 1. This is a crucial result, as it
guarantees that the error ξ is null only when the vehicles are in coordination. Furthermore,
we will assume that the communication is bidirectional. This implies that the Laplacian is
symmetric and that the left eigenvector associated to the null eigenvalue is 1T .
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5.3 Coordination with continuous communication

The dynamics of the coordination error defined in (5.1) are described by

ξ̇ = LDγ̇

Consider the path-following controller of Section 4.4.2. The speed profile was assigned to
each vehicle identically through the equality γ̇ = vd(γ), which substituted into the foregoing
expression yields

ξ̇ = LDvd (5.2)

where vd is the vector whose elements are the desired speeds of the vehicles in the flock.
The key idea in designing the coordination controller is to introduce a control variable in
the form of a correction term ṽd that is added to the desired speed:

vd = vL + ṽd (5.3)

where vL is the speed profile assigned to the path.

Proposition 5.1. Consider a formation of n vehicles, each guided by the motion control
laws (4.47) along a path parametrized by γi, and let LD be the normalized Laplacian of
a graph that describes the inter-vehicle communications network. Assume that any two
neighboring vehicles communicate continuously. Then, the decentralized control law

ṽd = −kξ tanh (LDγ) (5.4)

where kξ is a sufficiently large positive constant, makes the coordination error ξ and the
speed profile vd converge to neighborhoods respectively of the origin and of vL. Morover, if
vL = k1 then ξ and vd converge asymptotically to 0 and to vL, respectively, and Problem
5.1 is solved.

Proof. Substituting the control law (5.4) in (5.3), and the resulting expression in (5.2),
yields

ξ̇ = LDvL − kξLD tanh (ξ) (5.5)

Let vL be considered as a perturbation input. Then ξ = 0 is an equilibrium point of the
unforced closed-loop system. Define a Lyapunov function

Vξ =
1
2
ξT ξ

whose time derivative is
V̇ξ = ξT ξ̇
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From (5.5)

V̇ξ = ξTLDvL − kξξ
TLD tanh ξ

= −(1− θ + θ)kξξ
TLD tanh ξ + ξTLDvL (5.6)

with 0 ≤ θ ≤ 1. In Chapter 4 it had been assumed that vL is bounded. Therefore, provided
that the gain kξ is large enough, there always exists some ξ for which

‖ξ‖ ≥
∥∥∥∥arctanh

(
1
θkξ

vL

)∥∥∥∥ (5.7)

As the Laplacian LD is semipositive definite, from (5.6) and (5.7) we obtain

V̇ξ ≤ −(1− θ)kξξ
TLD tanh ξ ≤ 0

The foregoing inequality is trivially satisfied not only at the origin but also, from the
properties of the Laplacian, where ξT = k1T . However, this can never be verified, because
it would imply γTLD = 1T and 1T , that spans the kernel of LD, cannot belong also to its
image. Then V̇ξ is negative definite and, applying Theorem 2.11, ξ is ISS with respect to
vL. This means that

‖ξ‖a ≤ arctanh
(

1
θkξ

‖vL‖a

)
and

‖ṽd‖a ≤
1
θ
‖vL‖a

so from (5.3)

‖vd − vL‖a ≤ ‖ṽd‖a ≤
1
θ
‖vL‖a

that is, vd is bounded to a neighborhood of vL. Notice that selecting a higher gain kξ reduces
the size of the neighborhood to which ξ converges, but not the bound on vd. However, if
vL = k1, i.e., if the same speed profile is assigned to every vehicle, then vL disappears from
(5.6) and the equilibrium points ξ = 0 and vd = vL are globally asymptotically stable.

The control law (5.4) satisfies the requirement formulated in Chapter 4 that the speed
profile vd = vL + ṽd be bounded. The results of Proposition 5.1 apply also to the second
path-following strategy of Section 4.5, the only difference being that γ̇ = vd is not satisfied
identically. Instead γ̇ converges to a neighborhood of vd, the overall system being ISS
with restrictions on the initial states e(0) and vr(0). We can thus conclude that the overall
closed-loop system composed by n AUVs, each one equipped with one of the path-following
controllers of Section 4.6.2, and the coordination law (5.4), is ISS (with restrictions) and
solves the coordination problem 5.1.
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Figure 5.1: Coordination control with continuous communication

5.4 Coordination with discrete communication

The coordination controller designed in Section 5.3 relies on the continuous exchange of
information between the vehicles in the formation. All vehicle continuously broadcast
their parametrization state, and the parameter vector is available to every vehicle at any
instant in time (see Fig. 5.1). Underwater communications however are characterized by
low bandwidths that only allow the exchange of data to take place at discrete instants of
time. In (Aguiar and Pascoal, 2007a) a logic-based communications strategy is proposed,
that takes into account both the fact that communications do not occur in a continuous
manner and the cost of exchanging information. In between communications, that are
regulated by a supervisory logic, each vehicle runs estimations of the coordination states
of the rest of the flock (see Fig. 5.2). This is done through synchronized estimation blocks,
identical for every vehicle, that have the following expression, based on (5.3) and (5.4):

˙̂γ = vL(γ̂)− kξ tanh (LDγ̂ )

Every agent runs, amongst the others, an estimate of its own state. It is by comparing
the actual value of its state with this estimate that a vehicle decides when to communicate
with the vehicles in its neighborhood. If, at a certain instant tk, |γi− γ̂i| ≥ ε2, then vehicle
i broadcasts the value of γi. Assuming that no delays affect the communication links, each
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Figure 5.2: Coordination control with logic-based communication

vehicle updates its estimate instantly, so that

γ̂i(tk) = γi(tk)

Remembering the expression of the normalized Laplacian (2.24), the control law (5.4) be-
comes then

ṽd = −kξ tanh
(
γ −D−1Aγ̂

)
(5.8)

where it has been explicited that the correction term for every vehicle is the sum of a term
that depends on the coordination state of the vehicle itself, which is available in every
instant, and a term built on the estimations of the states of the other vehicles. In the
instants between communication, defining the estimation error γ̃ = γ − γ̂, inequality (5.6)
becomes

V̇ξ = −(1− θ + θ)kξξ
TLD tanh (ξ +D−1Aγ̃) + ξTLDvL

As |γ̃| is bounded by ε2 it can be dominated by ξ, so the system is ISS with respect to γ̃.
Selecting a lower tolerance ε2 reduces the neighborhood of the origin to which ξ converges
but increases the number of messages exchanged between vehicles. Notice that although
the control signal for each vehicle is based on the states of its neighbors, every agent runs
an estimation of the states of the whole flock. In the absence of delay, the updates of the
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Figure 5.3: Communication logic 1: At time tk vehicle 1 sends a message to vehicle 2 (a).
Vehicle 2 receives the message at tk + τ and immediately replies (b). Then, at tk + 2τ ,it
updates its estimate (c). Vehicle 1 only updates the estimate at tk + 2τ + τ̃ (d).

coordination states can be retransmitted across the formation and reach instantly every
vehicle (the graph is connected), so every vehicle has access to the same estimates, as
would happen if one single centralized estimator was shared by all the vehicles.

5.5 Coordination with time-delays

Underwater communications rely on acoustic systems that are characterized by low band-
width and short range. The communication channels are plagued with intermittent failures,
latency and multi-path effects, and delay is introduced both by the processing required and
by the distance between vehicles. Assume that at time t vehicle i broadcasts its coordi-
nation state. Vehicles j and k will receive the message at t + tj and t + tk respectively.
If the three vehicles were to update their estimate of γi as soon as they receive (or send,
in the case of i) the message, then the estimator blocks would cease to be synchronized.
The communication strategy of Section 5.4 must then be modified, taking into account
the network topology, and the update must take place so to keep the estimators always
synchronized.
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A solution to the estimation problem in the presence of time-delays, proposed in (Aguiar
and Pascoal, 2007a), requires for each vehicle to be equipped with as many independent
estimation blocks as the number of its neighbors. For every communication link there
are therefore two estimators that have to be kept synchronized. A single vehicle runs |Ni|
different estimates of γ. Let γjk

i denote the estimate of γi run by vehicle j on the estimator
associated with the link between j and k. If, at a certain instant tk, |γi − γ̂ij

i | ≥ ε2, then
vehicle i sends a message containing the actual value γi and the time tk to vehicle j. Vehicle
j receives the message at tk + τ but does not update its estimate of γi instantly. Instead,
it sends a “received” message back to i, and only executes the update in synchronization
with i.

In (Aguiar and Pascoal, 2007a) j updates its estimate at tk + 2τ , while i does the same
upon reception of the reply. After the update, the estimation error for γi on the link ij is

γi − γ̂ij
i =

∫ tk+2τ

tk

γ̇i(t)dt

which is bounded assuming that the time-delay is bounded. This strategy is based on the
assumption that the delay on a communication channel is the same in both directions.
A small difference τ̃ however will always be present, so an error exists also between the
estimates of the two vehicles over the same link, that is

γ̂ji
i = γ̂ij

i +
∫ tk+2τ+τ̃

tk+2τ

˙̂γji
i (t)dt

An example is given in Fig. 5.3.
An alternative update logic is based on a statistical evaluation of the time that is

required for the message to be sent and for the answer to be received. If at time tk vehicle
i needs to communicate γi to vehicle j, it estimates a maximum delay τmax and sends a
message containing tk,γi and τmax. If i receives an answer from j before tk + τmax then
both vehicles update their estimates at the instant tk + τmax (see Fig. 5.4). If the answer
is not received within the limit time, instead, the message is considered lost and a new
message is sent, with the up-to-date value of γi. The limit τmax has to be choosen so to
drive the probability of a lost message under a defined error margin. As the time between
the sending of a message and the update is maximized, when compared with the previous
strategy this one introduces a greater error between the actual state and the estimate:

γi − γ̂ij
i =

∫ tk+τmax

tk

γ̇i(t)dt
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Figure 5.4: Communication logic 2: At time tk vehicle 1 sends a message to vehicle 2 (a).
Vehicle 2 receives the message at tk + τ and immediately replies (b). Both vehicles update
their estimate at the same instant tk + τmax (c).
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However, it assures that the estimates over the same link are synchronized, that is

γi − γ̂ij
i = γi − γ̂ji

i

In the occurrance that j receives the message but i does not receive the reply, only j makes
an update. The difference introduced between the two estimates is however corrected as i
sends immediately a new message.

The control law (5.8) is still valid in the presence of time-delays. If a vehicle has more
than one estimation block, however, γ̂ will be a combination of all the estimates run by that
vehicle. In the two examples of Fig. 5.3 and Fig. 5.4, vehicle 1 has two estimator blocks.
Between the two available, the most accurate estimate of γ2 is the one of the estimator
synchronized with vehicle 2, that will therefore be chosen as the value to use in the control
law. For the same reason, the estimate of the block synchronized with vehicle 3 will be
adopted as γ3, so that

ṽ1 = −kξ tanh
(

γ1 −
1
2
γ̂12

2 − 1
2
γ̂13

3

)
(5.9a)

ṽ2 = −kξ tanh
(
γ2 − γ̂21

1

)
(5.9b)

ṽ3 = −kξ tanh
(
γ3 − γ̂31

1

)
(5.9c)

For the same reason, when the estimates over links 12 (or 13) are updated, the value of
γ̂3 (of γ̂2) used is γ̂13

3 (or γ̂3) that vehicle 1 knows and communicates to vehicle 2 (or 3)
along with γ1 and tk. If the communication graph is a tree, the strategy used to obtain
(5.9) can be generalized. Consider a vehicle i: the path connecting it to any vehicle j that
does not belong to its neighborhood passes through only one of its neighbors, k. Then, the
value chosen by i for the control law and for estimation updates will be γ̂ik

j , generated by
the estimator synchronized with k. Future research will consider other strategies to weigh
and combine the estimates available to one vehicle.

5.6 Summary

In this chapter Lyapunov control techniques and graph theory have been brought together
to design a decentralized controller that drives multiple autonomous vehicles along a path
while maintaining a desired inter-vehicle spatial pattern. By associating a logic-based com-
munications system to the coordination control we addressed the fact that communications
between agents only occur at discrete instants in time, and proposed a solution to tackle
the problem of time-delay in communications, that is especially challenging in underwater
applications of formation control.



Chapter 6

Simulation Results

This chapter illustrates via computer simulations the performance of the control strategies
devised in this thesis. The first simulation (Section 6.1) compares the trajectory-tracking
and the path-following controllers when driving the vehicle along the same path. In the
second simulation (Section 6.2) the robustness of the path-following controller is tested by
introducing sensor noise and water current. In Section 6.3 we simulate a coordinated path-
following mission. Section 6.4 analises a simulation of the same mission in the presence
of water current and variable time-delays. All the parameters and the settings for the
simulations in this chapter are reported in Table 6.1.

6.1 Trajectory-tracking and path-following

In this first simulation (see Fig. 6.1) an AUV was required to converge to, and then to move
along, a straight line, from (30,30) to (100,100).

In the case of trajectory-tracking, the virtual target progresses along the desired path
with fixed velocity vd, starting from (30,30). The AUV rotates, without moving forward,
to point the virtual target, until this reaches the point in the path closest to the vehicle.
Until that moment, the term in the control law (4.32b) relative to the position error and
the one relative to the time derivative of the position of the virtual target are opposed in
sign, and balance each other. Once the virtual target reaches the closest point, the vehicle
surges forward, reaches the path and then aligns itself to it to move along it. Note that
this “good behavior” is due to boundedness of the hyperbolic tangent function in (4.32b).
Without this function, the transient exhibited by the AUV would have been considerably
less smooth.

In the case of path-following (4.47b) the starting value of the parameter γ is the one
corresponding to the point of the path closest to the vehicle, so the initial position error
is smaller. With the first path-following strategy the virtual target progresses along the
path with fixed velocity vd, and the AUV chases it, gradually aligning its velocity with
the desired path. The trajectory followed by the AUV is therefore smoother. However,
convergence to the path is achieved more slowly.

When adopting the second path-following strategy (4.48c) since the evolution of the
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Figure 6.1: Motion of an AUV and the relative position error in the case of trajectory-
tracking (a), path-following (strategy I) (b) and path-following (strategy II) (c).
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position of the virtual target depends also on the position error, pd remains fixed at the
point of the path closest to the AUV until the AUV reaches the path. The trajectory of
the AUV is similar to the one obtained with trajectory-tracking, as in both cases the AUV
approaches the path almost perpendicularly, and only after having reached it it aligns its
velocity to the direction to follow.

Notice that if the point in the path closest to the AUV’s starting position is the beginning
of the path, trajectory-tracking controller and the path-following strategy I yield the same
results, as the virtual target’s initial position and its rate of progression are the same in
both cases.

6.2 Robustness of the path-following controller

The stability and convergence conditions resulting from the analysis, in Section 4.6, of
the closed-loop control system in absence of the sway velocity sensor, are very conserva-
tive. Two reasons for this are the following: (i) we have considered the vectorial dynamic
equations, instead of the single scalar equations, and (ii) we did not take into account
the fact that the damping forces increase with velocity. To assess the robustness of the
path-following controllers, a mission was simulated in which an AUV is required to follow a
path, made of a straight line followed by a circle, in the presence of sensor noise, affecting
the measurements of both position and velocity, strong water current and saturation of the
thrusters. Moreover, at the initial time the AUV faces away from the path. The results
obtained were very similar for both path-following strategies; we report the ones relative
to strategy II.

As shown in Fig. 6.2, the controller exhibits very good robustness properties. The
AUV’s trajectory in the simulation with disturbances (b) is very close to the one of the
case without disturbances (a), and the position error (c) is bounded to a small value. The
control signals of the inner loop (ud (d) and rd (e)) and the AUV velocities (d,e, and f)
are also bounded. There is a peak in yaw speed at the beginning of the simulation, when
the AUV has to rotate 180◦ to point the virtual target. The virtual target doesn’t move,
i.e., the parameter γ is constant, both at the beginning, when the position error is large,
and after the end of the path has been reached (Fig. 6.3). The observer designed in (4.3)
produces a good estimate of the water current speed and direction, which in this simulation
were made to vary. Notice that when it reaches the end of the path the AUV stops by
facing the water current and balancing its action with its thrusters.
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Figure 6.2: Path-following in the presence of sensor noise, water current and thruster
saturation: trajectory of the AUV with no disturbances (a) and with disturbances (b),
evolution of the position error (c) and AUV velocities (d,e, and f).
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saturation: evolution of the parameter γ and of its time derivative and estimated water
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6.3 Coordinated path-following

In this simulation three AUVs, with the communications network topology shown in Fig. 5.1
were required to follow a path while maintaining a spatial formation.

In the absence of time-delays, adopting the first path-following strategy the estimator
blocks onboard the AUVs are identically synchronized. The vehicles communicate just once
at the beginning of the path to synchronize their initial values of γ (as do vehicle 2 and
vehicle 3 in Fig. 6.5). To force communication and test the robustness of the coordination
algorithm, between 225 s and 300 s the time derivative of the parameter γ of vehicle 3 is
made to assume a fixed value, thus introducing a difference with the estimated value and
increasing the coordination error (Fig. 6.4). As shown in Fig. 6.5 when this happens vehicle
3 starts to communicate with the other two, sending the actual value of γ3 every time that
the difference with the estimated value passes a selected tolerance. Vehicles 1 and 2 adjust
their estimations and the evolution of their respective virtual targets changes acordingly.
The whole formation slows down until 300 s, and then finishes moving along the path at
the desired speed vL.

The first path-following strategy completely decouples the path-following problem for
each vehicle and the coordination problem for the formation. In other words, it synchronizes
the virtual targets, while the coordination of the vehicles depends on how well each vehicle
tracks the corresponding target. To address the situation in which the formation has to be
maintained when one of the vehicles has a difficulty in following the target, the solutions
are either to adopt the second path-following strategy, or to design a supervisory logic
that makes the vehicle that is affected by the problem modify the dynamic evolution of its
coordination parameter, and therefore transmit its new coordination behavior to the other
vehicles in the formation.

6.4 Coordinated path-following with communication delay

The simulation of Section 6.3 was repeated, adopting the second path-following strategy,
in the presence of time-delays, sensor noise, water current and thruster saturation. Fig. 6.6
shows that coordination is achieved even in the presence of disturbances: both the position
errors of each one of the vehicles and the coordination error are bounded to small values.
The effect of time-delays on the synchronization of the estimators is illustrated in Fig. 6.7.
At the initial instant, γ2 and γ3 are set to values that differ from zero more than the
tolerance (in this case, 5). The two vehicles immediately communicate their states to
vehicle 1. The reset of γ̂2 on the communication link 1-2, and of γ̂3 on link 1-3, occur more
or less (the time-delay is variable) after 5 seconds. Vehicle 1 then communicates these two
values, and the value of γ1, over the links opposite to the ones over which the values were
received. The corresponding resets occur at 10 s for vehicle 2, at 11 s for vehicle 3 and at
12.5 for vehicle 1.



6.4. COORDINATED PATH-FOLLOWING WITH COMMUNICATION DELAY 69

0 20 40 60 80 100 120
-20

-10

0

10

20

30

40

50

60

70

80

AUV position

y [m]

x
 [
m
]

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

Position error - Syrene n.1

t [s]

||
p
 -
 p

d
 -
 δ
||
 [
m
]

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

Position error - Syrene n.2

t [s]

||
p
 -
 p

d
 -
 δ
||
 [
m
]

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

Position error - Syrene n.3

t [s]

||
p
 -
 p

d
 -
 δ
||
 [
m
]

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

12

Coordination error

t [s]

||
ξ|
|

Figure 6.4: Coordinated path-following: trajectories and position errors of the AUVs and
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Figure 6.6: Coordinated path-following in the presence of time-delays: trajectories and
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Simulation 6.1 6.2 6.3 6.4
Inner loop

ku 4000
kr 4000

Outer loop
δ -0.5
kx 1
ky 0.6
kz 1

Water current observer
Kpobs

I
Kcobs

I
Coordination

kξ - - 0.5
Water current

‖vc‖ 0 0.5 m/s 0 0.5 m/s
φc 0 −45◦ 0 −45◦

σ2(‖vc‖) 0 0.01 0 0.01
σ2(φc) 0 0.01 0 0.01

Sensor noise
σ2(p) 0 0.5
σ2(u) 0 0.5

Communication delay
τ̄ - - 0 5 s

σ2(τ̄) - - 0 0.5
Thruster saturation

Fmax - 1500 N - 1500 N

Table 6.1: Parameters and settings of the simulations
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6.5 Summary

The simulations illustrated in this chapter show that the control strategies proposed in this
thesis exhibit a good performance in a wide range of scenarios. The results confirm that the
stability properties assessed in Chapters 4 and 5 hold for a wide range of initial conditions.
Furthermore, it is shown that the closed-loop systems are robust to sensor noise and water
current and are not affected relevantly by the introduction of thruster saturation.



Chapter 7

Conclusions and Further Research

7.1 Summary

Motivated by numerous mission scenarios, this thesis addressed the problem of motion
control of multiple autonomous underwater vehicles. Borrowing from Lyapunov based
techniques and graph theory we designed decentralized controllers that drive a flock of
AUVs along a desired path, while maintaining a specified inter-vehicle formation. The
problem was decoupled into the motion control task of making every vehicle follow a virtual
target along its corresponding path, and a dynamic assignment task of adjusting the speed
of the virtual targets so to achieve coordination.

In Chapter 4 we proposed different strategies for motion control, the common thread
being the separation between an inner-loop, that makes the vehicle follow a speed reference,
and an outer-loop that regulates this reference so that the vehicle tracks the virtual target.
The resulting control laws are valid for a wide range of underactuated AUVs.

In Chapter 5 we derived a decentralized coordination law based on a framework that
involves the concept of graph Laplacian. To address the fact that communication bandwidth
is very limited in underwater applications, we devised a supervisory logic that minimizes
the need for inter-vehicle communication.

The performance of the architecture resulting from bringing together the motion con-
trol and the coordination strategies was assessed through mathematical analysis and sim-
ulations. The system exhibited good behaviour in terms of stability, convergence, and
robustness to disturbances.

7.2 Future directions

The problems addressed while developing this work cover a vast number of fields. Some of
the results obtained are preliminary, and point out to possible avenues for future research.

Communication algorithms Whether all the vehicles achieve consensus, i.e., their esti-
mates converge to a common value, depends on the network topology and on the communi-
cation logic. Consensus seeking is the area of research that studies the techniques that allow
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n autonomous agents to achieve consensus (Lin et al., 2004; Olfati-Saber and Murray, 2004;
Moreau, 2005). Many applications of coordinated control rely on the assumption that the
convergence speed of consensus seeking is fast enough. For this reason, a widespread effort
is being devoted to investigate methods that improve the convergence speed, such as finding
the optimal weights associated with every communication link or using random rewiring to
change the topology, but there are still many difficulties in practical implementation.

Supervisory logic This thesis did not explicitly address the problem of vehicle failures
and avoidance of obstacles and inter-vehicle collision, situations in which one of the vehicles
may be required to move with a different speed, or along a different path, than the ones
assigned by the mission. Each vehicle should be afforded with the capability, at logic level,
to alter its own parametrized path. The communication logic described in Chapter 5 would
then assure that the other vehicles are aware of the change and that the coordination error
is bounded.

Coordinated tracking The coordination strategies proposed in this thesis require the
parametrization of the AUVs’ path. To benefit from the advantages of cooperation between
a network of agents also in trajectory-tracking missions, in which the path is not known a
priori, such as following a target whose position is known through sensing, or facing the
situations described in the previous point, a strategy has to be devised to parametrize the
path online and assign to each vehicle parametrization states that can be synchronized to
achieve coordination. While tracking a target, for example, a leader vehicle could sense
its position at discrete intervals of time and add successive parametrized segments to its
desired path. The information to be sent to the other vehicles could be reduced to the
segment’s length and direction, sufficient for the each of the other vehicles to parametrize
its own segment in a way to keep the desired formation.

Cooperative navigation Cooperative navigation has been (partially) addressed for land
robots or moving nodes in sensor networks. The main idea is to make use of the fact that
each individual member of the group could benefit from navigation information obtained
from other members. For underwater vehicles, cooperative navigation is considerably more
challenging but very attractive. Only few vehicles are needed to maintain an accurate
estimate of their positions through sophisticated (and expensive) navigation sensors (e.g.,
Doppler velocity logger and inertial navigation system). The other ones (a much larger
group) can have less sophisticated navigation suites.
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